
6. Release A Cross Subsystem Design Concepts

The design of the ECS applications is based on a number of common software architecture
principles. They ensure that (1) ECS applications will be able to interoperate, (2) ECS applications
are easier to maintain, support and operate; and (3) software components can be reused across
subsystems, thus reducing the implementation effort and risk.

This section elaborates five of these architectural concepts. They are:

• Distributed Communications Architecture,

• Security Architecture,

• External Interface Architecture,

• Systems Management Architecture, and

• User Interface Architecture.

Within the ECS architecture, responsibility for design and development components is allocated in
an unambiguous manner. Aspects of these designs, therefore, will appear in the various detailed
design documents of the subsystems which have the responsibility for their implementation.
However, the concepts are presented in this overview because they cross subsystem boundaries
and their interconnections and rationales are lost when viewed solely within the context of a
specific ECS subsystem.

6.1 Distributed Communications Architecture

6.1.1 Overview

The primary goal of the distributed communication architecture is to provide a software
infrastructure for current and future ECS development. This infrastructure must meet the science
and technology requirements of Release A, and provide a clear evolutionary path to the system
capabilities, technologies, and capacities required for Release B and beyond. In order to achieve
this goal, the Release A design was influenced by a number of design drivers. Foremost among
them are the following:

•	 Extensability - During the lifetime of ECS the system must accommodate growth in the
areas of value added providers, new data types and services, and interoperability with other
information systems. The distributed object architecture provides a uniform mechanism for
referencing and accessing ECS data, objects, and services.

•	 Evolvability - Due to the rapid growth in processing hardware, storage devices, network
communications, and information services the ECS must support a continuous evolution
of it’s components.

•	 Scalability - The ECS design must scale easily to the expected increase in users, data
products, and processing requirements of Release B and beyond.

6-1 305-CD-004-001

The distributed communications architecture provides the framework for meeting the needs of the
design drivers. Following the client/server architectural model, the distributed communications
architecture allows client and server applications to cooperate without direct knowledge of each
other. Service requests are made by invoking methods of a local "proxy" object within the client’s
address space. The proxy object, in turn, communicates with the server application to perform the
service request. This communication may occur across address spaces and platforms, and is
transparent to the application developer and the user.

This mechanism provides a layer of isolation between the client application and the server
implementation such that modifications to the server implementation can proceed without changing
the client implementation, so long as legacy methods provided by the server continue to be
supported. This allows ECS to add new servers, upgrade processing or storage hardware, and to
add new services without requiring modifications to clients of the server. The Release A distributed
communications architecture is comprised of the following key components:

•	 Distributed Client/Server Communications — ECS will use DCE, via the Object-Oriented
DCE (OODCE) COTS product for Release A. The architecture allows for a managed
transition to other technologies (e.g., CORBA) in subsequent releases.

•	 Distributed Object Framework (DOF) — The DOF consists of a set of core services
(interfaces and objects) that provide basic functionality to simplify the development of
distributed applications. Operations provided by the DOF are expected to serve as building
blocks for ECS client and server development. The DOF design is described in
Section 6.1.2.

•	 Universal References (UR) — UR provide a system wide mechanism for referencing
ECS data and service objects. The UR design encapsulates the details of locating and
accessing a server or data object. This design insulates the client applications from
knowledge of the location of the object and the communications protocols used to access
the object. The UR design is described in Section 6.1.3.

6.1.2 Distributed Object Framework

Object-Oriented applications are assembled from a number of interrelated objects. Each object is
characterized by a set of attributes and methods. Each object has a clear interface that identifies the
methods a user can invoke. The object that requests information is called the requester and the
object that provides a service is called the provider. Each provider object takes requests for
operations that it has identified in the interface, performs the computations, and passes the results
back to the requester. Object-oriented application development consists of defining and
instantiating the objects and passing messages (invoking methods) between the objects to achieve
its objective.

In single address space applications, all objects reside in the same address space. In the distributed
object framework, objects are distributed in multiple address spaces, spanning heterogeneous
platforms. Objects can reside anywhere in the network, but the basic contract between a provider
object and requester object is the interface that the provider advertises for a requester to use.
Objects can be spread across the network based on efficiency, availability of data, requirements for
autonomy, etc. From the perspective of the requester of a service, the object location (location

6-2 305-CD-004-001

independence) and invocation (invocation independence) should be the same no matter where the
object physically resides. Invoking methods amounts to passing messages between objects. If the
objects are in different address spaces, then the messaging is done via a network. The client/server
paradigm supports this kind of communication. In this paradigm, one side of the session (client) is
allowed to make requests, while the other side (server) may only make replies.

The distributed object framework consists of a set of core services with distinct functionality to
make the development of the distributed applications easier. The core services are naming,
security, threads, time, and rpc. DOF interacts with the Naming Service to save and retrieve
service locations. Similarly it interacts with the Security Service to ensure security.

In order to aid the application programmer, another layer of abstraction is provided. This layer
consists of four generic classes: Server, GenObject, Interface and InterfaceMgr. Application
programmers implementing the client server application need to develop three parts: an application
client part which invokes the service, an application server part that implements the service, and an
application server main (driver) part which actually creates and runs the application server as a
separate process and provides all the functionality needed at the server side.

The application client class inherits from the Interface class and the application server class inherits
from the InterfaceMgr and the GenObject to use the default functionality provided in the parent
classes. Alternately, they can modify the inherited methods to achieve the needed behavior. There
is a global instance of the server class which the server driver users. These four generic classes,
along with the Interface Definition Language (IDL), C and C++ (limited) language bindings to the
IDL provide all the functionality for the application programmer to develop client/server
applications.

The application program carries on all the interaction with the underlying core services like naming,
security, threads, and time through the DOF for normal operations. Interfaces to these underlying
core services are also provided.

6.1.3 Universal References (URs)

The ECS architecture contains a universal reference (UR) object which provides a means for
identifying objects throughout ECS in a standardized manner. The primary purpose of the UR is to
point to a data granule or to save a user session's context for actions such as subscriptions or
queries. Since ECS is a distributed system of UNIX processes communicating using OODCE as
the communication middleware, and since the persistent data tracked by a UR is located in any one
of these processes, there is a strong correlation between UR's and the communication
middleware's process identification mechanism. Therefore, the UR is a combination of network
information and ECS application information.

In order to access the UNIX process (server object) and gain access to the persistent data
associated with a UR, the UR must contain enough information to connect to that process. An
entry into the address space is needed to create the OODCE connection. After connecting, a client
of the ECS application data may create an instance of the actual object associated with the data.
(e.g., in order to create an Earth Science Data Type (ESDT) object, one must use the UR to

6-3 305-CD-004-001

connect to the correct Data Server object in that address space, and then perform whatever ESDT
operations desired.).

In order to support the UR requirements, we derived the necessary capabilities for UR's in the
ECS system:

• UR's identify the location of Data Granules and Service Providers.

• UR's can be used to connect to a Data Server.

• UR's have a finite/infinite lifetime.

• UR's map to a single data granule, service provider, subscription or query.

• The service provider can be derived from any UR.

• Working Collections can be created by inserting UR's.

• Data Granule UR's are created by and managed by the Data Server.

• UR's private ID mechanism is provided by CSS.

•	 The UR Model can be extended to Release B requirements (e.g., HTTP URL Relationships
for Data and Documents).

These UR requirements result in two designs which mirror one another. There is an external
ASCII based representation and an internal C++ based representation which allows the ECS
system to easily manipulate UR's internally and allows clients the flexibility of viewing UR's
outside the system, passing them to other clients in a form such as email, and re-introducing them
into the ECS system to restore state.

The external UR is a set of ASCII strings in some well defined format. This format is
defined/known by the internal ECS system. When a UR is extracted from the ECS system by a
client, the UR is "externalized" into this string format and delivered to the client. An external UR
has all the information necessary to pass back into the ECS system and restore all its state
information.

The internal UR is a class hierarchy with various levels which specialize the UR to meet particular
requirements for Data Granules, Service Providers and Session State storage. This is an extensible
design which allows the UR to grow over time and be used to identify all flavors of persistent
information. It leverages the capabilities of OODCE universal identifiers, since there is a great deal
of similarity, but it does not couple the ECS architecture to OODCE. Future revisions of the ECS
system may employ other universal identifier schemes to without damaging the design.

6.2 Security Architecture

6.2.1 Driving Requirements

ECS is part of an international science and research program accessible to users on a global basis.
Built on an open-computing network architecture to facilitate access by a wide variety of users, the
driving requirements of its security architecture are data integrity, availability, and confidentiality.

6-4 305-CD-004-001

The project vision is open access to well-pedigreed data in which users may have absolute faith,
while maintaining certain proprietary and administrative data in confidence.

Because of the scientific nature of the project, integrity of project information is paramount.
Scientific formulae, streams of collected data, algorithms and modules used to process or measure,
data files, archives, historical records control instructions and telemetry data all must be stored with
absolute confidence in the integrity of the stored material. Users expect the system to guard against
tampering with the source materials of the archive not only during storage, but during product
generation, and distribution. Integrity threats are manifested through unauthorized access or use,
leading to change, alteration or modification of information resources. The security architecture
must provide adequate safeguards against these threats.

The ability to have assured use of project resources is vital to instill confidence in its users. Indeed,
the users of ECS can be characterized as investors. Whether they are data providers (investing the
fruits of their labor in the vision of an open, accessible archive) or data consumers (investing tax
dollars, grant dollars, or corporate investment dollars), they have a right to expect availability.
Availability is also important for more mundane, but just as vital reasons, for example, to satisfy
timing and coordination requirements for scientific study and research experiments. Availability
needs translate into two categories: fault tolerant features to preclude failure or operational
disruption; and recovery actions, to enable timely resumption of operational activities and minimize
the length of the disruption. Availability threats are manifested through denial of use actions, either
physical in nature (e.g., explosion, flooding) or logical (e.g., computer virus or other intrusive
software, or flooding, i.e., swamping a system component such as a gateway with such a large
amount of messages or requests that other users find it difficult to get serviced). Because of the
increasing complexity and interdependencies in large integrated systems, a failure in one
component could have widespread physical or logical impact.

Confidentiality requirements exist because some of the information within ECS requires special
protection. This includes operational or control information that is time-critical or used to control
mission operations, specific user product requests and account information, and information of a
private nature on individual users on the system. Information of this nature, if compromised, could
result in damage or harm to ECS or to individuals. In addition, in some few instances archived data
may be held as proprietary for a period of time, before it is made generally accessible. This may be
for a short interval, while the data producer is exercising quality control testing over a new
product, or of a longer duration, for example, provided to a data producer as an inducement to
participate in the ECS system.

6.2.2 Information Security Strategy

Physical threats are countered by physical security measures that are, generally, implemented by
physical barriers or operational procedures. The subject of this Security Architecture section of the
design specification is logical security, i.e., measures taken by the computer system to protect itself
against threats. Within the context of the International Standards Organization (ISO) Open Systems
Interconnect (OSI) model, ECS security functions are applied at the Application Layer (layers 5
and above), supported by an infrastructure (layers 4 and below) providing network, transport, and
interoperability services.

6-5 305-CD-004-001

Security management services are provided enterprise-wide through the Management Services
Subsystem (MSS). MSS applications provide services such as fault, performance, security, and
accountability management. MSS manages both ECS’s network resources, but also ECS’s host
and application resources. It also provides administrative support to the defensive infrastructure
employed (e.g., DCE, application-layer gateways, network firewalls) by ECS to defend against a
variety of logical threats. MSS allocates these management services to both the system-wide and
local levels. Thus, with few exceptions, management service are fully decentralized, with no single
point of failure that would preclude authorized user access, nor permit unauthorized user access.

The main threats to the ECS and their countermeasures are listed in Table 6.2-1. The table also
indicates the ECS subsystem which is responsible for the implementation of the countermeasures.
In general, system security measures are assigned to CSMS, since logical security attacks today
usually exploit the network links that each system has with the outside. Moreover, by securing the
communications within the system, it is often possible to isolate the remainder of the system from a
successful attack on a particular system component.

However, communications components lack the application context that is sometimes needed to
provide special protection. For example, CSMS can protect the access to a service which manages
private data and thus relieve that service from having to implement extensive security measures
itself. However, CSMS protection is incomplete, since CSMS will know only the destination but
not the specific nature of an access request. In such cases, applications will provide additional
access controls; these will typically rely on the user authentication performed by CSMS, but apply
application-layer rules to determine authorization. They may also depend on CSMS ACL
management as a repository for persistent, global, or remotely managed authorization rules.

6.2.3 OSF/DCE and OODCE Architecture

The core of information security within ECS will be based on the Open Software Foundation’s
Distributed Computing Environment (OSF/DCE). This technology is generally used in ECS to
provide enterprise coordination among mixed computing platforms. Applications are layered atop a
framework of DCE “middleware.” In the present context the DCE middleware provides extra
services in the area of data integrity, availability, and confidentiality. In particular, DCE provides
user authentication, authorization down to the individual transaction level (for individuals or
groups), and secure interoperability among applications.

Object-Oriented DCE (OODCE) provides a linkage between the object-oriented design approach
selected by ECS and the DCE libraries provided by OSF. It may be viewed as an abstraction layer
between the object-oriented application and the DCE middleware, making all of the DCE services
(including naming, time, distributed file access, and threads, in addition to security) easily
accessible to the application programmer.

6-6 305-CD-004-001

Table 6.2-1. Threat/Countermeasures

Threat Countermeasures C S S I S S M S S Other

Unauthorized use, privilege abuse Authentication/
Authorization

X X

Unauthorized use of access controlled
resources

Access Control X X

Data tampering Data Integrity X X

Electronic 'eavesdropping' Data Privacy X

Unauthorized use, cracker/hacker
activity

Security Audits X X

Unauthorized use, abuse, virus
detection, denial of service, 'cracker'
and hacker detection

Intrusion Detection X X

Lack of secure environment due to
non-compliance of security
procedures

Compliance Management X

Crackers and hackers, viruses,
broadcast storms, unauthorized use of
resources

Routing Control Firewalls
Address filtering

X

Unauthorized access to private or
proprietary data within a data server

Authentication/Authorization
DBMS Security

X DSS

Unauthorized alteration of processing
schedules and plans

UNIX Access Controls
Authentication/Authorization
DBMS Security

X PLS &
DPS

DCE provides security features by employing a variation of the Kerberos model (version 5 or later)
and POSIX 1003.6 Access Control lists (ACLs). Kerberos provides a strong protocol for
authenticating users (proving a user is who he/she says he/she is), and thereafter provides trusted
third-party services to applications, vouching to them for a previously authenticated user’s identity.
Secure authorization (verifying a user is authorized to perform the requested function, or access the
selected data) is provided by authenticated remote procedure calls (RPCs), a form of function
entitlement, and by application-embedded rules or application-invoked ACL managers, which
verify the authorization of an authenticated user to any requested resource. The combination of
authentication, authorization, and secure interoperability is the key security characteristic of the
ECS DCE/OODCE architecture.

6-7 305-CD-004-001

Internet

EBnet

R

R

CNE
R

G
S

F
C

 E
xc

h
. L

A
N

R
R

G
S

F
C

 E
C

S
 is

o
L

A
N

Client/
Adv

BB/
GDS

R

R
an

y
D

A
A

C
 E

C
S

 is
o

L
A

N

Client/
Adv/
GDS

any
DAAC
MAN

R

an
y

D
A

A
C

 E
xc

h
. L

A
N

GSFC ECS LAN

Server Server Server

any DAAC ECS LAN

Server Server Server

R

R

isoCell

GFSC Cell

anyDAAC Cell

R

R

SCF

R

R
(GSFC Only)

EBnet

Figure 6.2-1. Conceptual DCE Cell-Based Security Architecture

Figure 6.2-1 illustrates the main concepts of the ECS security architecture. The DCE Cell
Configuration trade (see 540-TP-001-001, Technical Paper: Communications and Systems
Management Segment (CSMS) Preliminary Design Review Trade Studies for the ECS Project)
identified multiple cell as a preferred design solution with regard to scalability and evolvability
concerns. A cell around each DAAC set of resources is employed to prevent general public access
into production environments. In addition, each DAAC requires at least one host with a low
security, public access (a “gateway”) to encourage the use of ECS. One solution is the creation of
an integration cell that 'connects' all public access points at each DAAC together and isolates the
rest of the system from the security threats they pose.

Contrary to the expectation at PDR, the ECS Release A design consists of a single cell which
encompasses all DAAC resources and crosses site boundaries. The reason for this compromise are
certain multi-cell constraints inherent in the current DCE releases, which will disappear in the
future. In particular, the generally available release of DCE (OSF 1.0.3) does not support cross
cell authentication. Thus, users (including applications) in one cell cannot securely access services
in another cell. The single-cell security architecture planned for Release A represents the optimum
middleware infrastructure and associated security, while living within the constraints of the
currently available technology. It is depicted in Figure 6.2-2.

6-8 305-CD-004-001

Internet

EBnet

R

R

CNE
R

G
S

F
C

 E
xc

h
. L

A
N

R
R

G
S

F
C

 E
C

S
 is

o
L

A
N

Security
Gateway

R

R

an
y

D
A

A
C

 E
C

S
 is

o
L

A
N

any

DAAC
MAN

R

an
y

D
A

A
C

 E
xc

h
. L

A
N

GSFC ECS LAN

Server Server Server

any DAAC ECS LAN

Server Server Server

R Release A
ECS CellR

SCF

R

R
(GSFC Only)

Security
Gateway

Figure 6.2-2. Release A Security Architecture

However, the single-cell approach should be viewed only as an intermediate step to the more
desirable implementation. The maturing OSF/DCE product plans to support the necessary
functions in the next major release. Thus, the Release B evolution path is toward multiple cells,
one-per-DAAC, providing local autonomy and improved reliability and availability across the entire
(multi-DAAC) system. The cell partitioning strategy does not prohibit direct high-speed access to
ECS production LANs, and provides efficient location of system resources through distributed
directory and security services in every cell. By delegating the assignment of user privileges
independently to each DAAC cell, privileged user access may follow site policy, with little
likelihood of direct intrusion or potential for security breach by the general public. By establishing
a trust relationship among the various ECS cells, distributing the privilege assignments provides
autonomy while enabling users to enter ECS anywhere and have the same view of the system. The
principles of the architecture for future releases are further depicted in Figure 6.2-3.

6-9 305-CD-004-001

Internet/
NSI

isoCELL

anyDAAC Cell

Homogeneous
User View of
ECS

Growth Cells and
Specialized Security Cells

Security Perimeter

Autonomous DAAC Operations

Figure 6.2-3. DCE Cell Partitioning Strategy

6.2.4 Security Implementation within ECS

Figure 6.2-4 illustrates how DCE security is used within ECS to enable a secure distributed
computing environment. After the administrator has created an account for a user, the user can
participate in a secure DCE system. Typically a user logs in at the beginning of a session through
the CSS login facility server. The login facility server sends a request for authentication credentials
to Authentication Server. The Authentication Server sends back the authentication credentials,
called a Ticket. The Authentication Server's replay is encrypted using the user's password, so if
the user can supply the right password, the replay can be decrypted and the Ticket can be accessed.
Tickets are used by clients to authenticate themselves to servers; that is, to prove that clients are
really who they say they are.

Next, the Login Facility sends the Ticket to the Privilege Server. The Privilege Server returns
authentication credentials, called a PAC (Privilege Attribute Certificate). The PAC contains
authentication information specific to the user, such as which groups the user belongs to. PACs are
used to authorize users; that is, to help a server decide whether users should be granted access to
resources that the server manages. When the Login Facility has finished running, the user has a
security environment and can communicate in a secure way with application servers. Major aspects
of security include data privacy and integrity, authentication, and authorization.

Data integrity ensures that data in transit or in storage is not modified. DCE provides an option
(specified by the application programmer when designing the respective interface) to add encrypted
checksums to the data. DCE can also ensure that data in transit cannot be read any unauthorized
parties by encrypting the data stream itself. The DBMS, UNIX file system, and access to either
(protected by DCE authentication/authorization) are responsible for the integrity of data in storage.

6-10 305-CD-004-001

Administrator

Application
Client

User

Create User

Log Me In

Ticket

Authorize Me
(with ticket)

Registry Server

Authentication
Server

Privilege
Server

Application
Server

Security Server
(seed)

Security
Database

ACL Manager

Login

Authenticated RPC
(with PAC)

Figure 6.2-4. Use of DCE within ECS

The protection level for data privacy or confidentiality is, like data integrity, again partially
determined by the application designer. Full encryption, used to guarantee the privacy of data either
in transit or in storage, is expensive in terms of system performance and should be used sparingly.
The same controls providing for data integrity (DBMS, file system, authentication, authorization)
also are used to provide for data privacy for data in storage. For Release A, no requirements for
data privacy have yet been identified, though there is discussion of some data being temporarily
proprietary, and therefore subject to read access controls.

DCE also provides strong authentication, being able to verify the identity of a principal without
passing his or her password in the clear. With DCE, authentication is done through a trusted third
party. Authentication can be performed manually through the principal, or automatically within
normal client/server authentication processes. A principal authentication, done by a user during
login, is an interactive process in which the user password is supplied on the users command line,
but not passed across the network to the server. A non-interactive principal authentication occurs
when a host is booted and a server needs to acquire a different identity other than the default (root).

The process of checking the privileges of a principal (i.e., whether he or she is allowed to access a
system resource on the network) is called Authorization. Authorization can be based on the name
of the principal (this is called name-based authorization), or on the group to which the principal
belongs (this is called PAC based authorization). The specific authorization type is specified upon
initial session login by the selection of the appropriate authorization protocol. Group based
authorization is useful when many users share similar privileges; by assigning their privileges to a
group, the administration of the privileges is simplified, but it is still possible to maintain the user’s

6-11 305-CD-004-001

identity within the system. Name based security, on the other hand, is needed when individual
users have specific privileges not shared by others (as may be the case, for example, with DAAC
operations personnel).

DCE manages authorizations using Access Control Lists (ACL). A component of DCE, the ACL
manager, provides functionality needed for the authorization process. It defines access control
permissions, creates and associates ACLs to objects, creates and manages ACL databases, and
supports standard interfaces for external system. CSS provides an API via which ECS applications
can inquire whether a user is authorized to obtain the service he or she requested. This interface
hides the nature and the mechanics of the authorization process from the application - the
application need not even “know” the user’s login name or group account.

6.2.5 Non-DCE Based Security

Within ECS Release A, not all communications take place via DCE or OODCE. For example, bulk
data transfers regularly take place using file transfer (ftp). ECS secures these interfaces by making
them an integral part of a client-server sessions which is initially established using DCE (via the
OODCE layer). For example, in order to initiate a file transfer, a client such as the processing
subsystem needs to issue an authorized data staging request to the data server subsystem. That is,
the initiating event will have had to pass DCE authentication. In addition, depending on the
sensitivity of the data transfer, a Kerberized version of ftp will be supported. By issuing one-time
userid/passwords for specified bulk data transfers, additional protection may thus be provided.

The situation is more complex at the external interfaces which ECS has with other systems or
legacy software which is reused for Release A (e.g., the Version 0 IMS). This is further discussed
in the next section of this overview, as part of the External Interface Architecture.

6.3 External Interface Architecture

6.3.1 Overview

ECS provides interfaces with external systems (e.g., TSDIS) or legacy software (e.g., the
Version 0 IMS). These interfaces pose challenges in several distinct areas:

•	 The external systems or legacy software components submit requests which are not
formatted in accordance with ECS rules. For example, TSDIS uses SFDU messages which
follow CCSDS standards; the Version 0 IMS formats its requests in an Object Description
Language (ODL).

•	 In addition, data exchanged with external systems often need to be reformatted during
import into ECS, or export to the external system. For example, the Version 0 IMS expects
result sets (i.e., lists of found data granules) to be formatted in ODL.

•	 ECS uses a distributed object infrastructure in which service requests are exchanged as
distributed “object method” invocations using OODCE (and ECS plans to migrate to
CORBA eventually). TSDIS and the Version 0 IMS, on the other hand, uses tcp/ip sockets
to communicate with ECS.

6-12 305-CD-004-001

•	 ECS uses DCE-based security. All requests are verified using DCE Access Control Lists
(ACL) as described in the Security Section of this overview. Users of ECS need to login to
their password-secured ECS account before they can obtain any services from ECS. None
of the Release A external systems nor the Version 0 IMS currently use DCE authentication
and security.

The ECS interfaces with external systems are called gateways. For Release A, the responsibility
for data access gateways (from the Version 0 IMS and TSDIS) belongs to the Data Management
Subsystem, whereas the responsibility for data ingest gateways belongs to the Ingest Subsystem.
However, all gateways pose similar design issues which can be grouped according to the above
areas:

•	 Application level issues. The incoming request must be parsed and interpreted, data
references must be translated from the vocabulary of the external system (e.g., Version 0)
into that of the ECS data model, and the ECS objects and methods must be called which are
needed to service the original request.

•	 Communications level issues. There needs to be support to transition from the external
communications method (such as sockets) to the ECS internal communications
infrastructure (OODCE based distributed objects).

•	 Security level issues. An ECS login must be performed before the request can be passed on
to ECS. Security policies which may be specific to each external interface determine how
the gateway will verify the identity of the external users, what ECS account it will use to
submit the external request, and what kind of other protection mechanisms it will employ to
safeguard the external communication, as well as the ECS system.

ECS has decided to base all gateway designs on a generic blueprint called the “Gateway”. Elements
of that gateway will be first implemented in Ir-1, and will be refined by Release A. The generic
blueprint pursues the following goals:

•	 Clearly separate applications, security and communications aspect of the gateway, such that
they each can be re-used independently, and also to simplify implementation.

•	 In particular, standardize the interfaces for the security gateway, such that if the security
policy for an external interface changes, the changes to the security gateway software are
transparent to the communications and applications gateway components. Such changes in
security policy are likely as ECS migrates through its various releases (e.g., due to a
change in the security sensitivity levels assigned to ECS by NASA).

For example, a large portion of the Version 0 Gateway is applicable to the TSDIS gateway: TSDIS
inventory search and data ordering capabilities are similar to (actually subsets of) the Version 0
capabilities, but they do not use Version 0 data names and valids, and the requests are not
formatted in ODL. The security aspects of the two interfaces, however, are likely to be different
(e.g., TSDIS may use Kerberos in its ECS interface). Reuse of the Version 0 gateway software for
the TSDIS interface, therefore, will benefit from a clean separation of the various gateway
functions.

6-13 305-CD-004-001

The following sections first provide an overview of the generic gateway architecture, followed by
an example in which the external communication uses Kerberos (this example may be applicable to
the TSDIS interface).

6.3.2 Gateway Architecture

Figure 6.3-1 shows the general gateway architecture. In the figure, the gateway provides an
interface between an external application (not shown) and some ECS Service.

The architecture shows the following six interfaces and components:

1.	 The communications gateway interfaces with the external system or software (Interface 1).
From an application perspective, this interface implements a standard polling or non-polling
mechanism to obtain service requests (for examples and details see the design of the Ingest
subsystem), but its details are otherwise irrelevant. When a send or receive is permitted,
and what is sent or received (e.g., DANs, Ingest Requests, TSDIS Status Requests, etc.),
and message formats and layouts are part of the applications protocol and are of no interest
to the communications gateway.

The communications gateway is configurable (e.g., communications method,
communications addresses, directory locations, mailbox addresses, etc.). The
communications gateway may remove information from incoming messages which is only
relevant for communications purposes.

2.	 The security gateway might process all incoming and outgoing messages, only incoming
ones, or only the first message (via Interfaces 2 and 3). For performance reasons, the
security gateway may remove itself from the event path, in which case communications
gateway and applications gateway may communicate directly (via Interface 4). The security
gateway may remove information from incoming messages which is only relevant for
security purposes.

The gateway will establish a DCE identity for the subsequent request and data exchange, in
general after verifying the identity and authority of the external user. The specifics of this
depend on the security policy implemented by the gateway. For example, the Version 0
IMS gateway will verify the user name and password, and then use it to log the external
user into DCE.

3.	 The applications gateway decodes an incoming message, determines the nature of the
request to be issued to ECS, creates the appropriate ECS client objects, formats and issues
the appropriate client methods in accordance with the API of the particular ECS service
which is the target of the request. The Application Gateway should call the CSS Security
Services to verify that the user (now identified as an ECS account) is authorized to issue the
gateway request. Interfaces 5 and 6 are normal ECS internal interfaces.

4.	 The applications gateway receives outgoing notices or responses from the ECS service via
the corresponding client objects, reformats these in accordance with the applications
protocol governing that external interface and sends them to the target recipient via the
Communications Gateway (via Interface 4), or perhaps via the security gateway (via
Interfaces 3 and 2) depending on security policy as controlled by the security gateway.

6-14 305-CD-004-001

GATEWAY

1 3

4

2

6

Comm.
Gateway

Dist.Obj.
Infrastructure

5

Security
Configuration
Information

Application
Server

Application
Subsystem

Communciations
Subsystem

M S S
Interfaces

Not Shown

Interfaces with
CSS Security

Services not shown

Security
Gateway

Comm.
Gateway

Comm.
Configuration
Information

Applications
Gateway

Application
Configuration
Information

External
System

Figure 6.3-1. Gateway Architecture

The presence of the security filter must be transparent to the application. That is, the interface
between the communications gateway and the applications gateway (Interface 4) will be identical to
that between the security gateway and the applications gateway (Interface 3).

Within ECS, the responsibility for the communications and security gateway is allocated to the
communications services subsystem (CSS), whereas the applications gateway responsibility falls
into the area of the Ingest Subsystem (INS) for ingest interfaces, and the data management
subsystem (DMS) for data access interfaces.

6.3.3 Gateway Example

This example focuses on the security gateway to illustrate how different “plug-in” security
gateways can implement different security policies. In the example, the external system has
Kerberos installed. ECS will maintain user accounts for the users from the external system in both
DCE and Kerberos Security databases. The functions of the security gateway then are to:

•	 authenticate the external users (validate the credentials of the principal coming into the
gateway),

6-15 305-CD-004-001

•	 authorize the external users (OPTIONAL, so only users with proper privileges can make
the requests to certain ECS applications)

•	 provide data integrity (OPTIONAL, make sure that the data coming from the external entity
is not modified in transit)

•	 provide data privacy (OPTIONAL, to protect the contents of the data coming from external
entity from eavesdropping).

External System ECS

Comm.
Gateway

Data Server
Client

Science
Data Server

Comm.
Gateway

Applications
Gateway

External
Application

Kerberos
Client

Security
Gateway

Kerberos
Server

Kerberos
to DCE

User
Mapping

inetd

ECS Security
Service

GATEWAY

Figure 6.3-2. Kerberos Security Gateway Example

The resulting gateway implementation is shown in Figure 6.3-2. This design refines the general
architecture as follows:

•	 The external application interfaces with the local Kerberos client, which in turn interfaces
with an ECS operated Kerberos server to obtain a Ticket Granting Ticket (TGT) and
subsequently, a Kerberos ticket to access the ECS gateway.

•	 The ticket is included in a message sent to the ECS resident gateway via a tcp/ip socket.
The message is accepted by the Communications Gateway and passed on to the Security
Gateway (note that the first message will be handled by the inetd, which will assign a port
to this communications session).

6-16 305-CD-004-001

•	 The Security Gateway verifies the ticket and establishes the external user’s identity. It uses
a mapping policy to determine the user’s ECS identity - the policy might be to use the exact
same identity, or there might be a substitution rule or table for all or some accounts. The
security gateway then logs the account into DCE. The subsequent ECS requests which will
result from this particular communications session will be submitted under this ECS
identity.

•	 The first message exchange was dedicated to the authentication process. The application
gateway is unaware that it took place. The security gateway now removes itself from the
interchange. Subsequent messages will pass directly from the communications gateway to
the application gateway (but only, if the initial authentication was successful).

It is easy to see how the security gateway design could be modified to require authentication for
each incoming and outgoing message or to add/remove cryptographic checksums in order to ensure
the integrity of the transferred information without affecting the application gateway.

6.4 System Management Architecture

ECS is a large, distributed, heterogeneous system consisting of many off the self (OTS) and
developed components. The management and operation (M&O) of such a system poses numerous
challenges. This section reviews the architectural concepts which are the foundation of the ECS
system management support and which are applied across ECS subsystems. The section is
organized as follows:

•	 Sections 6.4.1 and 6.4.2 review the various levels of system management and the
geographic distribution of management responsibilities

•	 Section 6.4.3 lists and briefly explains the M&O positions which have been defined for the
ECS system

•	 Section 6.4.4 explains how the system management responsibilities are divided up between
the ECS subsystems

•	 The most important subsystem in this context is the Management Services Subsystem
(MSS) within the CSMS segment. Section 6.4.5 provides an overview of its functions and
its relationship to the application subsystems.

•	 Section 6.4.6 discusses an important aspect of system management and MSS, namely the
handling and management of errors and faults, and the roles which the applications
subsystems and MSS play in it.

•	 Finally, Section 6.4.7 describes how these concepts combine to support management and
operations reporting.

6.4.1 System Management Levels

ECS provides system management at several levels, namely at the:

•	 Individual Service Level - certain types of services require specialized operator knowledge.
For example, a DBMS administrator is expected to know database technology in general

6-17 305-CD-004-001

and the specific product (Sybase) being used by the system; the manager of the science
processing environment needs experience with UNIX batch production environments as
well as some familiarity with various groups of science algorithms and their
interdependencies

•	 Subsystem Level - while the smooth operation of the various services which make up a
subsystem is important, it is the subsystem as a whole which provides an essential and
integral set of ECS capabilities. For example, the Ingest Subsystem is needed to load and
archive level 0 data. Individual component failures are of interest insofar as they impede the
ability of the Ingest Subsystem to perform that function.

•	 Site Level - many M&O functions, on the other hand, are best executed on a site-wide
basis, for example, the health of computing platforms, their operating software and
applications, peripherals, and networks and networking devices. This reduces staffing
requirements, and the maintenance of site-wide awareness of overall system performance
and status makes for better planning and better management decisions in emergency
situations.

•	 ECS Level - monitoring and management of the ECS mission, its budgets, and resources,
on the other hand, requires an overall system view. This is also referred to as enterprise
level management.

6.4.2 Distribution of Management Functions

Geographically, system management occurs at the individual DAAC, and at the SMC at GSFC,
which performs Enterprise Monitoring and Coordination (EMC) functions. As a rule, service,
subsystem, and site level management are performed at each DAAC; enterprise management occurs
at the SMC. Table 6.4-1 lists the various types of management services, and shows where they are
performed or how management responsibilities are allocated between DAACs and SMC.

Table 6.4-1. Management Service Distribution (1 of 3)
Management

Service
Enterprise

Monitor and
Coordination

(EMC)

Local System
Management (LSM)

Comments

Policies and
Procedures

Provide Policy
Decisions,
Coordinate Policy,
Policy Compliance
Monitoring

Coordinate Policy, Site
Level Policy Decisions,
Policy Compliance
Monitoring and reporting

Policy Management
in Release A will be
through the use of
Office Automation
Tools.

Fault Management Receive Summary
Reports from Sites,
Monitor System Wide
Resources (WANs),
Perform Trend
Analysis

Monitor, detect, isolate,
diagnose, and recover
from faults within domain

Largely COTS
capabilities (HPOV),
EMC maintains
system-wide view
from Site updates
and monitoring

6-18 305-CD-004-001

Table 6.4-1. Management Service Distribution (2 of 3)
Management

Service
Enterprise

Monitor and
Coordination

(EMC)

Local System
Management (LSM)

Comments

Performance Trend analysis and
system-wide view
provided from Site
updates

Collect server, hardware,
and network performance
data, analyze
performance data, tune
and report to
SDPS/FOS/EMC

Site performance is
cooperative effort
between LSM and
SDPS/FOS
Trends are through
roll up of site reports

Trouble Ticketing Summary Reports,
View selected Site
problems, support
resolution

Document problem
reports, track actions and
closure. User and
resource summaries

Remedy selected as
TT package.

Physical
Configuration
Management

Same as DAAC Maintain Physical location
and configuration
information

Commercial package
to locate and record
resources, detects
changes to approved
configuration

Security Policy flowdown,
system-wide
monitoring and
analysis
DCE Cell
Management

Authentication,
authorization, intrusion
detection, DCE Cell
Management

Largely public domain
and COTS , HAL for
cell management
Policy flowdown and
administration is
through OA tools

Inventory System-wide
inventory creation
and management

Site inventory data
maintenance and
management

Inventory
Management in
Release A is through
OA tools

Logistics System-wide
monitoring of spares
and consumables

Site-level monitoring of
spares and consumables
including replenishment

Logistics
Management in
Release A is through
OA tools

Maintenance System-wide
maintenance analysis

Establish and maintain
PM schedules, monitor
and coordinate off-site
maintenance

Sites maintain
schedules and
records through OA
tools

Configuration
Management (CM)
(Software Change
Manager)

Software CM of ECS
baseline

Software CM for Site
Baseline

Clearcase selected
for Software CM

Baseline Manager Consolidated
baseline for system
wide configuration
and dependencies

Maintain site baseline for
operational system
configuration

COTS being
evaluated, Selection
expected before
CDR

6-19 305-CD-004-001

Table 6.4-1. Management Service Distribution (3 of 3)
Management

Service
Enterprise

Monitor and
Coordination

(EMC)

Local System
Management (LSM)

Comments

Change Request
Manager

Maintain system wide
status of change
requests

Maintain record of
configuration change
requests, tracks status,

COTS, DDTS has
been selected based
on evaluation and
project experience
with product.

Training Coordinate training
schedules, curricula,
user feedback, and
develop materials

Provide input on training
schedules, curricula, local
course development,
and evaluation

Training Management
in Release A is
through OA tools
used at Sites and
SMC

Planning System-wide
schedule policy,
priorities,
performance
assessment System
wide ground event
coordination

Schedule own resources
based on system-wide
priorities and policies,
plan ground events and
interface with FOS and
PDPS

Release A provides
for DAAC Resource
planning with limited
"Rollup capability for
SMC

Directory Content, format, and
update procedures

Maintain, replicate,
distribute

Limited to user
directory information
through Release A

Reports System-wide
reporting based on
"roll-up" of Site level
data

Site-level reporting on
performance, security,
fault, and configuration
information

Ad-hoc reporting
from DBMS, other
reports directly from
COTS products

6.4.3 M&O Positions

Table 6.4-2 lists the ECS M&O positions and their responsibilities. These positions are defined in
a functional sense - they represent a collection of related operator, support, or management
functions. Several positions could be filled by a single person, provided he or she has the required
qualifications and training.

6-20 305-CD-004-001

Table 6.4-2 Ops Positions and Responsibilities (1 of 3)
Operator Responsibilities

H/W Maintenance
Technician

Trouble shoot and isolate problems to and perform maintenance at the LRU level,
and/or coordinate with vendor for said maintenance of COTS hardware .

System
Administrator/
Computer Operator

Operate the host processors, support restarts/reboots, configure / re-configure
resources as directed, monitor system status, respond to console messages and do
initial program loads for all system upgrades. Perform minor housekeeping
maintenance, system back-up and recovery, operator level preventive maintenance
and problem diagnosis and recovery. Administer the networked workstations
supporting the M&O staff.

Operations
Supervisor

Provide first line supervision of DAAC ECS Operations including conflict resolution,
policy enforcement, productivity monitoring and staff supervision. Serve as backup
resource to fill in for operations personnel when required due to illness, vacations, etc.

Resource Planner /
Performance Analyst

Maintain and modify hardware characteristics database; generate monthly, weekly and
daily hardware activity schedules; monitor system anomaly tracking and analysis.
Monitor, analyze, trend and report local system performance; recommend and track
implementation of changes to system control parameters to improve system
performance; participate, with the SMC Performance Analyst, in monitoring overall ECS
system-wide performance. Alert DAAC to potential performance issues and problems
and SMC, ECS M&O Office and/or Project management to circumstances that may
require coordination between DAACs with Project (ESDIS) participation.

Resource Manager On-line management of operational resources. Configure operational resources in
accordance with approved resource schedule and operational resource baseline. Re
configure as required in response to utilization requirements, changes and anomalies.
Monitor, manage and control the local area network and system via the LSM software
suite, take corrective action to respond to anomalies, coordinate with SMC for wide area
network problems, assist in diagnosis and isolation of hardware and software problems,
and maintain system configuration tables. Monitor and report on the network
performance to management

Sustaining Engineer Analyze and support problem resolution and engineering change activities, including
all ECS interfaces; analyze and identify ways to accommodate needed improvements,
new technologies and new concepts; plan and manage system upgrades and
evolution; control and maintain ECS updates and perform the activities necessary to
assure ECS reliability, maintainability, and availability. As TAG member, evaluate user
inputs and monitor system performance to tune the system for optimum response and
support.

Configuration
Management
Administrator

Provide configuration and problem management system administration. Maintain
control of all DAAC configured hardware, software, science software and specified
DAAC documents. Ensure that changes to the hardware, software, and procedures are
properly documented and coordinated. Coordinate usage of approved configuration
management procedures with elements and external interface configuration
management. Assist in the development and administration of the library with respect
to configuration management procedures. Provide recording tasks for DAAC CCB,
generate configuration and problem status reports and prepare agendas for and
schedule CCB meetings.

6-21 305-CD-004-001

Table 6.4-2 Ops Positions and Responsibilities (2 of 3)
Operator Responsibilities

Property Manager Provide control of Contractor and Government ECS property and continuous audit trail
from receipt of item until transfer of accountability. Property management responsibility
for ECS equipment until accepted by CO/COTR and for equipment for which the
contractor has M&O responsibility. Interface with ECS ILS function at GSFC in
coordination of delivery of COTS hardware or software, handle ECS site hardware
shipping and receiving, act as local ILS representative for ECS. Control and record
consumables and inventory. Receive, mark, report, store, stage, control, pack and ship
ECS spares, repair parts, consumables, and HW/SW items received at or shipped from
each DAAC.

S/W Maintainer /
Programmer

Provide / support site problem resolution, integration and test of system changes and
develop DAAC unique extensions to ECS software. Produce, deliver and document
the corrections, modifications, and enhancements made to ECS software (including
COTS), and/or adapt or incorporate COTS software for ECS use.

Sr. Science
Coordinator

DAAC Sustaining Engineering team liaison / interface to the DAAC Scientist and the
DAAC Science support staff and through them, the DAAC's user community.
Contractor science lead for change review, science software I&T and science
production planning and operations.

System Tester Responsible for all system and acceptance testing of software and hardware
modifications and upgrades. Maintain and update test procedures and data bases.

Science S/W
Integrator (ECS)

After transition, provide on-site Science Tool Kit expertise and support to DAAC
Scientist / Science Support Teams in the test and integration of science S/W (both
updates and new S/W) into the ECS system. (Note: Prior to transition, this expertise is
provided initially by the ECS Science Office and then by the ECS Algorithm (Science
S/W) Development Support personnel at the DAAC.)

DAAC Assistant Provide technical support to DAAC, including its user services personnel. This
includes the provision of any necessary training to the DAAC staff to enable them to
continue performing operations for each subsequent release or system upgrade.

Production Planner /
Scheduler

Develop and maintain Production Planning Data Base. Develop, coordinate and
monitor Data Availability Schedules with external providers. Generate production
resource requirements. Develop and maintain production plans and schedules.

Production Monitor /
QA

Manage processing queues, monitor Data Processing Request execution status,
manage / optimize production resource utilization. Monitor quality and completeness of
input and output, using science software provided QA tools. Provide production
reports.

Ingest - Distribution
Technician

Receive, log, ingest and disposition all incoming non-electronic media. Monitor
electronic and manual ingest of data. Coordinate with sender to resolve any ingest
problems. Monitor electronic and perform physical distribution of data. Load / unload
media from write devices, assemble "data packages", package, label, and ship output
to science users. Follows up and trace undelivered output. Receive, open, and route
incoming mail to appropriate action department.

Archive (Data Server)
Manager

Manage input, storage and output of science data. Manage ingest data server(s) and
archive, ensuring data is made available for use in science production operations, to fill
user requests and that data is successfully archived. Oversee ingest and distribution
functions. Ensure the successful backup of science data. Perform periodic media
sampling and refresh as required and periodic preventive maintenance of archive
media. Establish and maintain data server and ingest-archive-retrieval subsystem
configurations. Status and report on ingest-archive-retrieval subsystem performance.

6-22 305-CD-004-001

Table 6.4-2 Ops Positions and Responsibilities (3 of 3)
Operator Responsibilities

Data Base
Administrator

Maintain the data bases and structure management for the integrated SDPS and the
LSM. Perform the data base administration utilities, such as data base backup and
recovery, performance monitoring and tuning. Administer data base access control,
and daily data base synchronization.

Algorithm
Development
Support

Provide support to DAAC Scientist, Science Support Teams and the Instrument Team
scientists in the development and integration of algorithms (science S/W) for both
updates and new algorithms into the ECS system. In accordance with SCF policy,
provide science production QA and problem resolution with the SCF. Support USO in
responding to highly technical user assistance requests. (Note: prior to M&O staffing at
each DAAC, these functions are performed by the ECS Science Office.)

Data Specialist Possess an intimate knowledge of the DAAC's data and metadata sets and are expert
users of the ECS suite of data access software tools. Answer detailed questions
concerning the discipline data stored at their DAAC. Support initialization and
maintenance of data server and production planning data base, advertisement of new
data sets and services and responding to technical user requests. Work with Database
Administrator in structuring data base, data sets and metadata.

User Assistance Provide the user support interface (phone; electronic and hard copy mail) to help users
locate and order data, to request processing and to report problems. Answer general
user questions about the ECS services, tools and data. Assist new users in registration
and generation of user profiles.

6.4.4 Division of Responsibilities

The ECS subsystems have distinct responsibilities for the management of various resources within
ECS. In this context, the term “managed resource” refers to the following types of objects (they are
also called “Managed Objects”):

• networks and network devices

• computing platforms and their peripherals and operating systems

• other special devices with their operating software (e.g., archives)

• off-the-shelf and custom developed application software services

As a general rule, each individual subsystem has the responsibility to provide system management
functions at the service and subsystem level for its custom software services, any off-the-shelf
software services, and any special devices employed by that subsystem. Subsystems are also
responsible for supporting site and enterprise level system management through appropriate
interfaces with the ECS system management infrastructure, unless such interfaces are provided by
a vendor as off-the-shelf items.

Examples of service and subsystem level managed resources include databases and their database
management systems, ECS application services such as data server search and access services,
data distribution services, and ingest services. It is the responsibility of the respective subsystem to
support the operator positions which are specifically assigned to support that subsystem, such as

6-23 305-CD-004-001

an Ingest or Distribution Technician or an Archive Manager. Some off-the-shelf products are used
across (or by) several subsystems. Support for the corresponding operator positions is generally
provided by the OTS product vendor, however, any additional support functions which must be
tailored to the specific needs of a subsystem are the responsibility of that subsystem.

MSS, on the other hand, has the responsibility for providing site and enterprise system
management functions. This includes the management of networks, network devices, hardware
platforms and their peripherals and operating software, and any off-the-shelf components for
which the vendor provides interfaces into the ECS system management infrastructure.

Examples of system resources that MSS manages include routers, hubs, communications links
(FDDI, Ethernet, and WAN links), hosts, applications, processes, operating systems, logical
devices, software libraries, file systems, and peripheral devices. In managing these resources,
MSS is responsible for accountability management (maintaining user profiles, maintaining an audit
trail of user actions on each managed resource, and maintaining a data audit trail of actions
performed on a data item); configuration management (maintaining the resource baseline, managing
software changes to managed resources, and tracking change requests for managed resources);
fault management (identifying, isolating, and resolving faults detected on a managed resource);
performance management (monitoring both real-time and long term resource performance), and
security management (protecting managed resources from security intrusions and controlling
access to managed resources).

In the management of resources, the subsystems may also need to deal with security issues such as
the authorization rights of a client to access a requested service or resource, the detection, reporting
and possible recovery from errors (such as errors in data, or errors with media in dedicated
hardware such as the archive server). Application-level performance metrics monitored may
include items such as the number of data products that have been ordered, the number of data sets
that have been ingested, and the number of data products that have been processed. In order to
assist the subsystems in gathering this management data where necessary, MSS provides the
subsystems with the capability to log the information through the use of its management agent
services. This information can then be used directly by the other subsystem or imported into the
management database for reporting via the report generation application. Figure 6.4-1 shows, at a
conceptual level, the flow of data and commands between application subsystems and MSS.

Each of the application services will interface with MSS through an MSS provided interface.
Applications provide information about themselves (e.g., current state and performance statistics),
report noteworthy events (e.g., errors and faults), accept management called “instrumentation”
(e.g., shut down commands), and receive notifications of events to which they need to react.
Application platforms (and devices) also contain system management “agents” which are
responsible for providing similar functions for the platform and its operating software (or for the
device).

Events are logged at three levels. They are logged locally initially (i.e., on the application
platform). These logs may be managed by the application (e.g., an ingest log), or they may be
managed entirely by MSS (if the application itself has no direct interest in the event log). On a
regular basis (or as needed), the event reports are consolidated into a site event history database

6-24 305-CD-004-001

Site
Event

Database

Application
Service

Local
System

Management

MSS
Agent

Application Platform

Application

Service
MSS

Interface

MSS
Agent

Application Platform

System Management
Platform

MSS
Interface

Application
Events

Lookups

Instrumentations
Notifications

DAAC
DAAC

SMC

System
Event

Database Reporting Data

6-25
305-C

D
-004-001

DAAC

Figure 6.4-1. System Management Data and Command Flows

(managed by Sybase), which can be used for ad-hoc and regular site level management reporting
(see Section 6.4.6). Finally, extracts and summaries of the site event data will be forwarded to the
SMC for consolidation and integration across the ECS. Logging is discussed in more detail in
Section 6.4.6 on reporting, because it forms the basis for the management reporting functions.

SNMP has been chosen as the management protocol since it is the defacto and Internet standard
protocol for network management in TCP/IP environments. Applications, on the other hand,
interface with MSS via their MSS interfaces using OODCE.

6.4.5 MSS Overview

The most important component in the overall system management architecture is the MSS
subsystem of the CSMS segment. Is has the responsibility for coordinating system management at
the site and system level. The following were key drivers in its design:

• there will be no single point of failure

• DAACs will be able to manage their own resources

• it will be possible to perform system-wide monitoring and coordination

•	 the architecture is neutral with respect to system management policy, for example, how
enterprise management functions are geographically partitioned

• within an implementation, it will be possible to distribute authority based on policy

•	 system management will not interfere with the accomplishment of operational DAAC
functions

Avoiding any single point of failure is paramount to good system engineering practice. All system
functions must be implemented in a manner that provides high availability and failure protection.
The concept of a central monitoring and coordination function (versus central management and
control) allows the SMC to monitor activities between all DAACs and within DAACs to identify
problem areas and coordinate solutions as required. Performance analysis of the total system
would become a predominant EMC function. Flows outside of ECS would be monitored at the
SMC.

Local management at the DAACs of their unique resources, with visibility when required across
the system is synonymous with the concept of federation in advanced enterprise management
solutions. The federated approach to systems management allows the DAACs to work problems
between themselves without having to have GSFC involved unless appropriate. This represents an
expedient approach to problem resolution, by allowing the involved parties to directly resolve a
problem.

A policy neutral architecture defers policy decisions out to the implementation (design) stage, and
allows flexibility for system reconfiguration to reflect policy changes over time. Distribution of
authority provides flexibility for monitoring and coordination backup, both at the DAACs and at
the SMC. Finally, the concept of systems management being unobtrusive to in-line operations
acknowledges that systems management is a service to users.

6-26 305-CD-004-001

Figure 6.4-2 expands on Figure 6.4-1. It illustrates the MSS internal management data flows and
the flows to ECS applications. While individual subsystems are independently responsible for
process and task management-related aspects of their own subsystem, MSS is responsible for the
management (monitor and control) of ECS resources, including networks, systems, and
applications. Health and status of ECS resources are monitored in addition to functional areas of
performance, fault, accountability, and security. MSS controls the real-time configuration of
networks, systems and server applications, including system startup, shutdown, suspend, and
resume operations.

The figure provides more detail on the four general forms of intercommunication between MSS
and the other ECS subsystems - event logging, notification, lookups, and commands (called
instrumentation). Event logging is a one way exchange from the ECS subsystem to MSS to log
key subsystem level events into the MSS for monitoring purposes. Examples of application use of
the MSS event logger include the start and stop of product generation, and data delivery
completion. Notification is a one way exchange from MSS to ECS subsystem applications that are
used to notify ECS applications of system health and status concerns that may affect the
applications operation. An example of a notification is the message delivery of production string
unavailability due to hardware error. Lookup is a bi-directional interface, called by the ECS
subsystem applications, to obtain system information from MSS. An example of a lookup is an
application request for user profile information for a shipping address to satisfy a product order.
Instrumentation is a bi-directional exchange initiated by MSS to the ECS subsystem applications to
control applications processes. Generic instrumentation requests include application suspend and
resume operations. Application specific instrumentation requests include requests such number of
orders processed, number of browses, number of searches, or number of products delivered.

Monitoring of ECS subsystem applications is performed one of two ways. The first method is to
collect information about managed objects. This is done through either UNIX commands or other
utilities described later in this section. A second method of monitoring is to collect information
from managed objects through instrumentation of the managed object. In this case, applications
must be developed to provide information on events that generate management data and respond to
MSS instrumentation requests.

6-27 305-CD-004-001

multisite
managem

ent
LSM

local
management

agents

SCDO applications
and devices

(managed resources)

computer /
human

interface

gateway/router

communications
server

DIB

node
history uploaded

(local)
history

directives
/

replies

email
store

routing
tables,

address
filters

status

directives, schedules

application data,
authentication/authorization

data

replies, event reports replies, event
reports

attributes of addressable objects
(e.g., access control lists,

name / address translations
resource capacities)

routing
tables

address
filters

attributes of
addressable

objects
directives/replies

directives/replies

uploaded history uploaded
history

email

history

history

application
data application

data

directives

replies,
event

reports

interaction

directives

commands
(reformatted directives)

replies,
events

customer
registration

updates

interaction

authentication/authorization
data,

name / address translations,
email

EMC
status

authentication/authorization
data,

name / address translations,
email

authentication/authorization
data,

name / address translations,
email

authentication/authorization
data

name / address translations

external
mgmt

systems

customer
system

routing tables,
address filters

A

A
attributes of addressable

objects

email

B

B

history

MIB

managed
resource
attributes

uploaded
history

uploaded
(system)

history and
archive

PDPS

maintenance
schedules,

test schedules

uploaded history
directives/replies

uploaded history
directives/replies

email

6-28
305-C

D
-004-001

Figure 6.4-2 MSS Management Flows

MSS control of ECS subsystem applications is only through instrumentation requests. In order for
instrumentation to function, the ECS subsystem applications must be instrumented to respond to
MSS control requests.

The problem of the management of widely distributed resources is solved by using a manager
agent architecture, as depicted in Figure 6.4-3. The manager-agent architecture makes a formal split
between two types of functions: managers and agents. Manager functions consume management
information and control/initiate management actions with a managed object (resource) as the target
of the operation. Agent functions, which are co-resident with the managed objects (resources)
produce management data and take action on behalf of managers. That is, the manager makes
management requests of the agent, and the agent emits responses to those requests. Agents act as
an intermediary between the management applications and the managed objects. Further, agents are
also capable of emitting event notifications to the manager. The distinction here between responses
and events is that responses from agents always match up to a manager request, while events have
no corresponding manager request.

Management Server

Requests for
& Commands Responses

& Notifications

M
U
I

MIB

Common
Management
Services

Management
Application
Services

Management FrameworkManagement
database

MIB

Agent

History Log

ECS managed objects

MIB

Agent

History Log

ECS managed objects

MIB

Agent

History Log

ECS managed objects

Periodic
transfers

M&O Staff

data

ECS managed hosts

Figure 6.4-3. Manager/Agent Architecture

The MSS Management Agents provides the following functions:

• Enable the management applications to retrieve and to set managed object values.

• Perform local polling on remote hosts to monitor the state of managed resources.

• Handle event logging and notifications.

6-29 305-CD-004-001

•	 Provide instrumentation API to application developers to enable the manageability of ECS
applications.

•	 Define the managed object model to represent the management characteristics of ECS
applications.

MSS agents are based on the use of a Management Information Base (MIB). MSS requires that on
each managed host, standard SNMP MIB II, Host Resource MIB, and the MIBs of network
devices are supported by vendor agents. In addition, a managed object model is defined by MSS
for ECS applications in SNMP MIB format. The information contained in the MIB is composed of
different types of attributes: configuration, performance, fault, dynamic, static, and traps.

Fully distributed client-server system management application services for distributed enterprises
such as ECS are not commercially available today. For Release A, HP OpenView has been chosen
as a framework for integration of multi-vendor network and system management products to
support migration to a fully integrated management solution as such products become commercially
available.

6.4.6 Event, Exception, Error and Fault Handling

One of the main areas in which applications subsystems and MSS will work together is the
handling of events, and in particular of errors and faults. Section 6.4.5 described how applications
and MSS in principle interface, and how their responsibilities are partitioned.

This section provides a general overview of Exception, Error and Fault handling across
subsystems within ECS:

• Section 6.4.6.1 presents a framework for the classification of error and fault related events.

•	 Section 6.4.6.2 describes rules for error and fault handling. In the ECS design, the two
combine to define a set of common software objects for reuse across subsystems which
provide error detection and reporting, standardize status information status information
returned from object invocations, and place some application level service on top of the
MSS provided infrastructure.

•	 Section 6.4.6.3 lists and provides brief descriptions of the various classes of faults and
error conditions within ECS.

6.4.6.1 Classification Framework

The following provides the definitions for a set of terms and their related software objects in the
ECS design.

6.4.6.1.1 Exceptions

An exception is an abnormal condition arising from the environment in which a program executes.
An exception may be raised because of an illegal execution of a particular instruction, or it may be
triggered by the application itself to report an error. For example, dividing a number by zero would
raise an exception.

6-30 305-CD-004-001

An exception must be handled by an exception handler. In other words, an exception will
propagate upwards the calling chain until an exception handler is found which will deal with the
exception. It may or may not be possible to recover from the exception within the program, i.e.,
the application may revert to a normal state after dealing with the exception, or the program may
terminate abnormally.

6.4.6.1.2 Faults

The term “Fault” is defined in the context of the MSS concept of “Managed Objects”. A Managed
Object is an system or application resource which s monitored and managed by MSS (see
Section 6.4.4). A fault is an unacceptable change in the state of a managed object that leads to a
change in the real time configuration of the system. A fault is typically triggered by some software
or hardware failure which is detected by or reported to the managed object (e.g., in the form of an
error return status on some system call); concurrently and independently, the fault may be also be
detected by an MSS agent monitoring the resource which failed. As a result of the fault, the system
may stop to operate, or generate errors and then continue to run in a mode that is not considered
normal (downgraded mode). There is usually a symptom before a fault occurs.

•	 Example 1: A parity error can kill a process (the process being killed in response to a parity
error is a fault) which might have been caused by the failure of a microscopic capacitor to
hold a charge, which is reflected in a bit being in the wrong state ("off" rather than "on")
(symptom).

•	 Example 2: When one component (object) requests service from another component,
service may not be provided because client has made a valid request to the server, but the
server is unable to fulfill the request (due to unavailability of resource - a hardware fault)

It is possible to create fault hierarchies based on a number of categorization factors. Faults can be
classified based on

• their nature (e.g. hardware fault, software fault, etc.), or

• from an operations perspective.

From a system management perspective, the latter classifications are more useful and has been
adopted by ECS. For example, operational categorization will include the duration of the outage;
the level of service that will be available until the fault is repaired and the system has returned to its
normal operating state; the nature of the recovery actions which are needed (e.g., automatic vs.
manual); and the impact on the rest of the system (e.g., localized, affecting the whole subsystem,
affecting a site, or affecting ECS as a whole).

6.4.6.1.3 Errors

An error is an unexpected problem internal to the system which usually manifests itself, eventually
in the system's external behavior. It is a deviation from the correct result -- an indication of the
occurrence of a fault and may be reported by an exception. The error is usually returned in a status
variable. An error may be detected by hardware (e.g., illegal instruction executed, arithmetic
overflow), by a run-time support system (e.g., array bounds error), or by the application itself
(e.g., checksum error). In other words,

6-31 305-CD-004-001

•	 Example: When one component (object) requests service from another component, service
may not be provided because the client has made a request that is outside of the server's
specification. In this case, the server is unwilling to provide the service, and the client is the
party in error.

Errors are associated with an error explanation (which may be reported to the operator when the
error is displayed on a console), and require some recovery procedure in the software which
receives the error notification. For example, if an unexpected input occurs, the common recovery
procedure would be to skip the record and process the next record. Similarly, the recovery for a
duplicate message is to ignore it, while the recovery for a missed message could be a request to
resend.

Within ECS, errors are categorized based on the commonality of their error messages and recovery
procedure. Each class of error is represented in the design as software object class which
encapsulates the desired behavior and information.

6.4.6.1.4 Events

An event is an individual stimulus from one object to another or from the environment to an object.
Events include error conditions as well as normal occurrences. Events are atomic and
asynchronous. A function call is an event, and the return from that call is a second event. Error is
also an event. Only our interpretation makes it an error. Other examples include reception of a
command or a message, starting or stopping an activity, creation or deletion of an object, causing a
change in the relationship, etc.

6.4.6.2 Error, Fault and Event Handling

The following describes the general framework for handling events within ECS. It includes the
detection of events, their identification, reporting, and resultant actions (including entering into or
recovering from a degraded mode).

6.4.6.2.1 Event Identification and Attributes

The following are general rules which define how events are identified and what attributes are
associated with them, at a minimum:

•	 Every event will have a unique identifier for the purposes of identification and log
maintenance.

•	 Events will identify the subsystem and subsystem component with which they are
associated.

•	 Every event will have associated with it the identifiers and names of the calling object and
the called object. This provides a mechanism for linking events as a chain for traceability.

• Every event will have information about its disposition in the form of a status (error, fault)

• Every event will record its various classification attributes (e.g., severity).

• Every event will have a holder for a message string describing the event

6-32 305-CD-004-001

The design provides a common base class for uniform handling of events. It will contain all the
attributes and operations necessary for the communication between two objects. The common base
class will log certain events automatically via the MSS event reporting interface, and provide
capabilities that permit the use of other logs besides the MSS log, e.g., to support
debugging/tracing of errors, analyzing performance, generating security audits trails, determining
and analyzing resource utilization.

6.4.6.2.2 Exception Handling

The C++ language provides a mechanism for raising and handling exceptions that arise due to
anomalies that include user, logic or system errors. If the detecting function cannot deal with the
anomaly, it raises, or throws, an exception. A function that handles that kind of exception, catches
it. This function is also known as an exception handler.

In C++, whenever an exception is thrown, it cannot be ignored - there must be some kind of
notification or termination of the program. If no user-provided exception handler is present, the
compiler provides a default mechanism to terminate the program.

The significant benefit of using exceptions is that it significantly reduces the size and complexity of
program code and eliminates the need to explicitly test for specific program anomalies. Because of
its many advantages, and the fact that ECS software will be developed using C++, it is project
directive to use the C++ provided exception handling mechanism as one alternative for handling
errors.

The following common framework will be provided during the implementation phase for uniform
handling of exceptions:

•	 Naming convention. All exceptions will be named according to a common convention that
is tied to the underlying error being reported through the exception.

•	 Event / Message Catalog. All events will be collected in an ECS wide event catalog, receive
a unique identification, and will have explanatory text (suitable for display to operations
personnel) associated with them..

•	 Linking events. Links must be provided to trace the exception to the underlying error that
raised the exception and the corresponding event that produced the error.

•	 Event hierarchy. Because exceptions are a mechanism for reporting errors, the exception
hierarchy will be identical to the error class hierarchy.

6.4.6.2.2 Catch-all Exception Handler

Each application service must have a catch-all exception handler which reports other-wise uncaught
exceptions. A catch-all exception handler is a default exception handler that terminates any
exception which is propagated up to the top of the calling chain.

6.4.6.2.3 Fault Handling

The ECS Fault handling is performed by MSS which provides the following services:

6-33 305-CD-004-001

•	 MSS Objects for notification, lookup, event logging and instrumentation (a common
interface for handling faults through change of state of managed objects and MSS Event
log)

•	 Fault Management including notification to dependents that a fault has occurred and launch
of a recovery procedure to recover from the fault

All faults are reported, and the reported information includes a fault classification attribute. The
following classifications are used by ECS:

•	 Minor degradation. The component (object) can continue to provide all the services that it
supports, although there may be reduced performance. For example, a storage device may
fail, but the service can continue using the remaining storage devices. Likewise if a couple
of processors fail in a Symmetric Multiprocessor in the Processing Subsystem, other
processors can be used to make up the loss.

•	 Major degradation. The component (object) is unable to provide some services but can still
support other services. For example an instance of a Client is unable to send or receive
messages due to a network problem, but can continue to provide local services.

•	 Loss of services. The component (object) is unable to provide any useful services. For
example, if a critical COTS component fails, a loss of service may result.

A loss of service may need a common recovery procedure like restart, or remove failed component
and integrate new component irrespective of whether the failed component is a disk, processor or
network. Also, such a classification scheme could introduce a common display procedure that
colors an icon in the M&O GUI a very dark shade of red for loss of service and a lighter shade of
red for minor degradation. In summary, faults will be classified based on operations concepts and
M&O perspective.

6.4.6.2.4 Fault Tolerance and Recovery.

Fault Tolerance is the ability of the system to continue to operate in the presence of faults. For
example, if an archive drive fails, but the archive has two or more drives, the archive will continue
to be operable, albeit at a reduced rate of throughput. When the system suffers a fault which
reduces some operational system capability, the system is said to operate in “degraded mode”.
When the original failure has been repaired and the system is returns to its normal operating
capability, the system is said to have “recovered.

There are three main types of fault response:

•	 Continue to process the event despite the failure. The system may be changed to a
downgraded mode until the cause of the fault is removed and the system can return to
normal operation

• Abandon the event, perform any cleanup and regain control for handling new events

•	 Cause failure (Fail-stop - the application will either operate according to its specification or
it will stop). No more events are processed until a recovery procedure (automatic or
manual) is completed

6-34 305-CD-004-001

ECS subsystems will be designed to continue to operate in degraded mode (rather than terminating
their operation completely), whenever possible. It is also an ECS design goal to have subsystems
recover automatically to their normal operational capability when the original fault is repaired.
Where the application cannot be able to recover on its own, the MSS Fault Manager will launch the
designated recovery procedure.

6.4.6.2.5 Error Handling

All errors will be reported to MSS via the event reporting interfaces. The reported information will
include the error identification, an error message, and any addition attributes which are needed to
describe the detailed nature of the error (e.g., for a file open error, the type and name of the file
which could not be opened

6.4.6.2.4.6 Error Detection

An important aspect of errors is the method of their detection. Within ECS, methods of detection
are categorized into Detector Classes. Detector classes are derived by examining each input to the
application and enumerating the types of error detection which are possible for those inputs (some
error detectors may not be dependent on any specific input). The following is a basic list of
detector classes:

•	 Response time exceeded - many device access services monitor the health of devices by
using timers. To avoid redundant error detection code, individual service implementations
should be examined to see if this check is done below the application level.

• Capacity exceeded - applies to all storage including datasets, queues, heaps, etc.

•	 Missed message - for point-to-point messages, the lower level communication protocols
will check sequence numbers, guaranteeing that the messages are delivered in order to the
application. This is not the case for broadcast messages.

•	 Faulty/Unexpected input - the input can be checked for syntax and semantic errors without
reference to state data

•	 Duplicate message - this happens when the original component sent a message to another
component and failed after sending the message, the backup component has resent the same
message. The receiving component will give this error.

•	 Input/state inconsistency - the input, when checked against state data is found to be
semantically incorrect

•	 Faulty state or logic - for example: directory corruption; or previously committed state data
now looks bad, often due to inconsistencies among data sets, an unplanned execution flow.

•	 Negative response - a peer or lower level service returns an "unwilling" or "unable"
response

•	 Heartbeat - A solicited or unsolicited periodic message was not received. Generally this
occurs with external interfaces and attachments

• Stop (relayed from part of the environment) - PGE failure

6-35 305-CD-004-001

A stop can mean one of two things: a) the address space stops, or b) the processing of the
particular event stops. When this behavior is desired, the failure of a particular event should
not be allowed to affect other events (for e.g., partial database updates should be rolled
back, or the particular database should be marked as unusable)

•	 Unknown ("unknown" should never be explicitly reported; it exists to account for bugs in
error handling logic that leave this field unspecified)

6.4.6.3 List of Errors and Faults

Table 6.4.6-1 illustrates major errors in subsystems and categorization according to the scheme
outlined above. The detector class is used to frame a message string to describe the error message.

6.4.6.11 Rules for Error, Exception and Fault Handling

The rules are classified as general, application domain specific error handling (where MSS is not
involved other than just logging the event), and MSS Fault Management through change of state of
Managed Objects. The following is a strawman list of rules for subsystem designers and
developers:

General rules

•	 The definitions provided here will form the basis for Event, Error, Exception and Fault
handling

• Every exception and fault must have a recovery procedure or a handler to recover

• The public class GLEvent must be used for all event handling

•	 Exceptions must be handled locally using an exception handler. Fault notification and
logging must be handled through interface class provided by MSS Fault Management
services (MsEvent)

•	 Any recovery that cannot be handled locally must be handled through interface class
provided by MSS Fault Management services

• All objects within a failed component must recover to a defined state

• When a recovering from a fault, the recovery procedure must not produce the same fault

•	 When recovering from an exception, only if the exception is handled partially, the same
exception may be raised to be caught at the next higher level by another exception handler

•	 A catch-all exception handler will be provided to catch any exception. However, the catch
all exception handler will not provide information on the type of exception. The catch-all
handler will be used to confine exceptions from propagating beyond a certain domain.

•	 Faults should be classified from an M&O perspective: a) minor degradation, b) major
degradation, c) loss of services

6-36 305-CD-004-001

Table 6.4.6-1 Strawman List of Errors/Faults for SDSRV
Identify
Error/
fault

Fault/
Error
(specify
error or
fault)

Description of
the error/fault

CI
Component
where
error/fault
occurs

CI
component
where the
error/fault
is detected

CSCI/HWCI
responsible for
recovery action

Severity
(fatal,
warning,
high,
low,med)

CI to be
reported
(including,
MSS and
M&O)

Detector
class

Initialization
File/
Environment
Corrupt

Error This would be
seen during a
system startup
process and
would result in
one or more
executables not
starting

SDSRV SDSRV M&O staff will
perform recovery
procedures

Medium MSS and
M&O

Faulty state
or logic

DB
Transaction
Log Full

Error This condition
would result in
the inability to
insert additional
persistent data
into the
database
engine(s) used
with the Data
Server

SDSRV SDSRV Operations DBA
would need to
dump the
transaction log
and restore prior
operation of the
affected database

High MSS and
M&O

Capacity
exceeded

DB
Connection
Dropped

Fault This could be a
serious failure
with the
database or a
short-lived
problem with the
connection

SDSRV SDSRV Operations DBA
would need to
evaluate the
problem, possibly
restarting the
database and
data server
processes

Fatal MSS and
M&O

Unable to
establish
link to/invoke
DLL

Error DLLs are
invoked for
newly added
data type
services.

SDSRV SDSRV Operations must
issue a trouble
ticket and have
the problem
analyzed and
resolved

High MSS and
M&O

Negative
response

Internal
queue
overflow

Error This is a result
of a poorly
tuned system.
Potential loss of
service
requests could
result.

SDSRV SDSRV Operations staff
would need to
immediately
throttle back sys
tem processing
thresholds for
requests.
Operations staff
would analyze
system off-line
and tune

High MSS and
M&O

Capacity
exceeded

Unable to
allocate disk
space

Error Unable to
allocate working
storage space
using STMGT
CSCI.

SDSRV SDSRV Alert operations
staff who would
immediately lower
system thres
holds for req
uests. Operations
staff would
analyze system
off-line and tune.

High MSS and
M&O

Capacity
exceeded

6-37 305-CD-004-001

Table 6.4.6-2 Strawman List of Errors/Faults for DDSRV
Identify
Error/fault

Fault/Error
(specify
error or
fault)

Description
of the
error/fault

CI
Component
where
error/fault
occurs

CI component
where the
error/fault is
detected

CSCI/HWCI
responsible
for recovery
action

Severity
(fatal,
warning,
high, low,
medium)

CI to be
reported
(including,
MSS and
M&O)

Detector
class

Unable to
allocate disk
space

Error Unable to
allocate
working
storage
space using
STMGT
CSCI.

DDSRV DDSRV Alert
operations
staff who
would
immediately
lower system
thresholds for
requests.
Operations
staff would
analyze
system off
line and tune.

High MSS and
M&O

Capacity
exceeded

Initialization
File/
Environment
Corrupt

Error This would
be seen
during a
system
startup
process and
would result
in one or
more
executables
not starting

DDSRV DDSRV M&O staff will
perform
recovery
procedures

Medium MSS and
M&O

Faulty
state or
logic

6-38 305-CD-004-001

Table 6.4.6-3 Strawman List of Errors/Faults for DDIST (1 of 2)
Identify
Error/fault

Fault/Error
(specify
error or
fault)

Description
of the
error/fault

CI
Component
where
error/fault
occurs

CI
component
where the
error/fault
is detected

CSCI/HWCI
responsible for
recovery action

Severity
(fatal,
warning,
high, low,
medium)

CI to be
reported
(including,
MSS and
M&O)

Detector
class

Unable to
allocate disk
space

Error Unable to
allocate
working
storage
space using
STMGT
CSCI.

DDIST DDIST Alert operations
staff who would
immediately lower
system
thresholds for
requests.
Operations staff
would analyze
system off-line
and tune.

High MSS and
M&O

Capacity
exceeded

Internal
queue
overflow

Error This is a
result of a
poorly tuned
system.
Potential
loss of
service
requests
could result.

DDIST DDIST Operations staff
would need to
immediately
throttle back
system
processing
thresholds for
requests.
Operations staff
would analyze
system off-line
and tune

High MSS and
M&O

Capacity
exceeded

Unable To
Allocate
Distribution
Device

Error Unable to
allocate a
media
distribution
device due
to device
off-line,
device
powered-off,
or device in
use by
another
process.

DDIST DDIST Report alert to
operations staff
who would check
device status,
perform corrective
action or notify
maintenance.

Medium MSS and
M&O

Faulty
state or
logic

6-39 305-CD-004-001

Table 6.4.6-3 Strawman List of Errors/Faults for DDIST (2 of 2)
Identify
Error/fault

Fault/Error
(specify
error or
fault)

Description
of the
error/fault

CI
Component
where
error/fault
occurs

CI
component
where the
error/fault
is detected

CSCI/HWCI
responsible for
recovery action

Severity
(fatal,
warning,
high, low,
medium)

CI to be
reported
(including,
MSS and
M&O)

Detector
class

Initialization
File/
Environment
Corrupt

Error This would
be seen
during a
system
startup
process and
would result
in one or
more
executables
not starting

DDIST DDIST M&O staff will
perform recovery
procedures

Medium MSS and
M&O

Faulty
state or
logic

Table 6.4.6-4 Strawman List of Errors/Faults for STMGT (1 of 4)
Identify
Error/fault

Fault/
Error
(specify
error or
fault)

Description of
the error/fault

CI
Component
where
error/fault
occurs

CI component
where the
error/fault is
detected

CSCI/HWCI
responsible
for recovery
action

Severity
(fatal,
warning,
high, low,
medium)

CI to be
reported
(including,
MSS and
M&O)

Detector
class

Parity Error Error Several CI
Components
may
experience
this error
(e.g., Tape,
CD-ROM,
Staging Disk)

Several CI
Components
may detect
this error

STMGT low if
recoverable/
fatal if
unrecover
able

MSS Faulty/
Unexpect
ed input

Configuration
file corrupted
or deleted

Error The
Configuration
file has been
deleted or
corrupted

DsStResourc
ePolicy

DsStResource
Policy

Manual
recovery
procedures
will be
defined for
M&O

show
stopper until
operators
have
restored or
recreated
file from last
snapshot
backup

MSS and
M&O

Faulty
state or
logic

Corrupted
schedule

Error
(possibly
Fault)

Schedule
becomes
corrupted

DsStResourc
eSchedule

DsStResource
Schedule

Manual
recovery
procedures
will be
defined for
M&O

Show
stopper until
schedule is
restored
from
snapshot
backup

MSS and
M&O

Faulty
state or
logic

6-40 305-CD-004-001

Table 6.4.6-4 Strawman List of Errors/Faults for STMGT (2 of 4)
Identify
Error/fault

Fault/
Error
(specify
error or
fault)

Description of
the error/fault

CI
Component
where
error/fault
occurs

CI component
where the
error/fault is
detected

CSCI/HWCI
responsible
for recovery
action

Severity
(fatal,
warning,
high, low,
medium)

CI to be
reported
(including,
MSS and
M&O)

Detector
class

Initialization
file corrupted

Error Initialization
files or files
used at
startup time
have been
corrupted

DsStResourc
ePolicy,
DsStResourc
eSchedule

DsStResource
Policy,
DsStResource
Schedule

Manual
recovery
procedures
will be
defined for
M&O

Low if
recoverable,
show
stopper until
backup have
been
restored

MSS and
M&O

Faulty
state or
logic

Insufficient
staging disk
space

Error All available
disk space is
in use (hard
limit for
request has
been
reached).

DsStStaging
Disk

DsStStagingDi
sk

STMGT;
Request will
be
terminated

Low
severity, for
subsequent
requests for
staging disk

MSS and
M&O

Capacity
exceeded

Queue full Error Queue is full
when a
request
comes in

DsStResourc
eQueue

DsStResource
Queue

Manual
recovery
procedures
will be
defined for
M&O;
request
must be
resubmitted

High
severity

MSS, M&O,
SDSVR,
DDIST,INGS
T

Capacity
exceeded

User Pull
Area full

Error User pull area
is already
filled with files
waiting to be
pulled and no
files can
currently be
deleted

DsStPullMoni
tor

DsStPullMonit
or

M & O
personnel
should
reevaluate
and reset
parameters
associated
with use of
the data pull
area.

Low
severity, will
probably
occur when
system is
new.
Subsequent
pull data
requests will
be delayed.

MSS, M&O,
DDIST

Capacity
exceeded

Staging List
corrupted

Error
(Possibly
Fault)

The file
containing
the staging
list has been
corrupted

DsStStaging
DataList

DsStStagingD
ataList

DsStStaging
DataList,

Low severity
if
recoverable,
fatal if not
recoverable

always MSS
and M&O; If
Fault,
include
SDSVR,
DDIST,
INGST

Faulty
state or
logic

6-41 305-CD-004-001

Table 6.4.6-4 Strawman List of Errors/Faults for STMGT (3 of 4)
Identify
Error/fault

Fault/
Error
(specify
error or
fault)

Description of
the error/fault

CI
Component
where
error/fault
occurs

CI component
where the
error/fault is
detected

CSCI/HWCI
responsible
for recovery
action

Severity
(fatal,
warning,
high, low,
medium)

CI to be
reported
(including,
MSS and
M&O)

Detector
class

FSMS failure Fault File open
error/file not
found. The
filename has
been
corrupted and
there is
actually a
request for an
unknown file

DsStArchive DsStArchive Science
Data Server,
takes care
of problem if
there are
more than 3
errors for a
file request

Low if
recoverable,
high if files
are lost and
have to be
recreated
from other
source

always MSS,
M&O,SDSV
R

Printer
Failure

Fault Printer error
during write
operation.
Caused by
hardware
failure

DsStPrinter DsStPrinter Operator
and job
requester
will be
informed.
Operator
response
needed

Fatal to
request

MSS, M & O,
DDIST

CDROM drive
failure

Fault Hardware
failure in the
physical drive
unit

DsStCDROM DsStCDROM Manual
operator
intervention
and/or
remedial
maintenance
required

Fatal to
request

MSS and
M&O, DDIST

CDROM
Media failure

Fault Physical
media cannot
be written to
or has
physical
damage

DsStCDROM DsStCDROM Media must
be replaced,
manual
operator
intervention
required

Fatal to
request

MSS and
M&O, DDIST

Fax failure Fault Fax
machine/boar
d/hardware
breaks down

DsStFax DsStFax Manual
operator
intervention
and/or
remedial
maintenance
required

Fatal to
request

MSS and
M&O, DDIST

6-42 305-CD-004-001

Table 6.4.6-4 Strawman List of Errors/Faults for STMGT (4 of 4)
Identify
Error/fault

Fault/
Error
(specify
error or
fault)

Description of
the error/fault

CI
Component
where
error/fault
occurs

CI component
where the
error/fault is
detected

CSCI/HWCI
responsible
for recovery
action

Severity
(fatal,
warning,
high, low,
medium)

CI to be
reported
(including,
MSS and
M&O)

Detector
class

Network
failure

Fault Network
communicatio
n failure; No
traffic gets
through, or
data
corrupted

DsStNetwork DsStNetwork Manual
recovery,
needs
maintenance
intervention.

Fatal to
request

M&O and
MSS,
DDIST,
INGST

Checksum
error

Error This error is
created
during a file
retrieve
operation.
When data
files are
retrieved from
the deep
archive a
checksum is
performed
and
compared to
the
checksum
performed
when the data
was archived
and the result
stored as file
metadata.

DsStArchive DsStArchive DsStArchive always fatal
to retrieval
request

MSS , M&O,
DDIST,PLAN
G,SDSVR

Input/
State
inconsist
ency

6-43 305-CD-004-001

Table 6.4.6-5 Strawman List of Errors/Faults for GTWAY (1 of 2)
Identify
Error/fault

Fault/Error
(specify
error or
fault)

Description
of the
error/fault

CI Component
where
error/fault
occurs

CI
component
where the
error/fault is
detected

CSCI/HWCI
responsible
for recovery
action

Severity
(fatal,
warning,
high, low,
medium)

CI to be
reported
(including,
MSS and
M&O)

Detector
class

Invalid
ODL
message

Error This error is
created if V0
client sends
an ODL
message
which has
invalid
syntax or
invalid
groups that
are not
known to the
system

Request
processing
module

Request
processing
module

Request
processing
module

low Version 0
Client

Faulty/Unex
pected input

Invalid
browse
request

Error This error is
created
when an
invalid
browse
parameters
are
received.

Request
processing
module

Request
processing
module

GTWAY low Version 0
Client

Faulty/Unex
pected input

Invalid
product
order

Error This error is
created
when the
product
order does
not contain
all
necessary
information
to fulfill the
order

Request
processing
module

Request
processing
module

GTWAY low Version 0
Client

Faulty/Unex
pected input

Incomplet
e schema
export

Error This error is
generated
when the
data server
exports
information
that is
incomplete

Data Server
Interface
module

GTWAY low SDSRV,
MSS

Faulty state
or logic

Database
execution
error

Error This error is
generated
whenever
query has
syntactical
or
semantical
errors and
limitations
such as
more than
252 values
in IN clause.

Request
processing,
Mapping
Service

Request
processing,
Mapping
Service

GTWAY low if
recoverabl
e/fatal if
unrecover
able

GTWAY. If
unrecover
able MSS
and M&O
will be
notified

Faulty/Unex
pected input

6-44 305-CD-004-001

Table 6.4.6-5 Strawman List of Errors/Faults for GTWAY (2 of 2)
Identify
Error/fault

Fault/Error
(specify
error or
fault)

Description
of the
error/fault

CI Component
where
error/fault
occurs

CI
component
where the
error/fault is
detected

CSCI/HWCI
responsible
for recovery
action

Severity
(fatal,
warning,
high, low,
medium)

CI to be
reported
(including,
MSS and
M&O)

Detector
class

Database
update
error

Error This error is
generated
during
updates to
the
database if
the data
input format
is not
correct

Request
processing,
mapping
service

Request
processing,
mapping
service

GTWAY low if
recoverabl
e/fatal if
unrecover
able

Faulty/Unex
pected input

Database
access
error

Exception This error is
generated
due to the
corruption of
the page
allocation or
corruption of
the
database

Request
processing
module,
Mapping
service

Request
processing
module,
Mapping
service

M&O can
restart the
DBMS
server or
restore the
database if
necessary

low if
recoverabl
e/fatal if
unrecover
able

M&O, MSS Faulty state
or logic

Failure to
connect to
gateway
DBMS
server

Exception This error is
generated if
incorrect
login
parameters
are used or
if the DBMS
server is not
running

Request
processing
module

Request
processing
module

M&O can
start the
server in
case of a
server
crash.
GTWAY is
responsible
for
correcting
the login
errors.

low if
recoverabl
e/fatal if
unrecover
able

Version 0
Client,
M&O, MSS

Negative
response

Failure to
allocate
memory

Exception This error is
generated
whenever
there is not
enough
memory for
dynamic
memory
allocation

All All DMGHW fatal MSS, M&O Capacity
exceeded

Database
lock table
full

Exception This error
can occur
when there
is high
traffic in the
system

Request
processing

Request
Processing

Request
Processing ,
M&O can
increase the
size of the
lock table
entries

low Version 0
Client,
MSS, M&O

Capacity
exceeded

Database
media
failure

Fault DMGHW DMGHW Recovery as
defined by
M&O

Fatal MSS, M&O Negative
response

6-45 305-CD-004-001

Table 6.4.6-6 Strawman List of Errors/Faults for DSKTP
Identify
Error/fault

Fault/Error
(specify
error or fault)

Description of
the error/fault

CI Component
where
error/fault
occurs

CI
component
where the
error/fault is
detected

CSCI/HWCI
responsible
for recovery
action

Severity
(fatal,
warning,
high, low,
medium)

CI to be
reported
(including,
MSS and
M&O)

Detector
class

Invalid
Username

Error This error is
created when
the user
enters a wrong
username in
the Login
screen

Desktop Desktop Desktop low MSS Faulty/Une
xpected
input

Correct
Username &
Invalid
Password

Error This error is
created when
the user
enters a
correct
username &
wrong
password in
the Login
screen

Desktop Desktop Desktop low MSS Faulty/Une
xpected
input

Error in Drag
& Drop

Error This error
occurs while
the drop
targets are not
of correct
type.

Desktop Desktop Desktop low Faulty/Une
xpected
input

Server down Fault This error will
occur when
client does not
execute
properly if the
server is down

Data
Server/LIM/DIM

Data
Server/LIM/
DIM

Desktop fatal MSS Negative
response

Process
creation
error

Fault Cannot spawn
a process for
Desktop
Application
due to error in
the Operating
System, or NW

Desktop/CSS Desktop Desktop fatal MSS Negative
response

6-46 305-CD-004-001

Table 6.4.6-7 Strawman List of Errors/Faults for
PRONG and PLANG (1 of 2)

Identify
Error/fault

Fault/
Error
(specify
error or
fault)

Description of
the error/fault

CI
Component
where
error/fault
occurs

CI
component
where the
error/fault
is detected

CSCI/HWCI
responsible
for
recovery
action

Severity
(fatal, warning,
high, low,
medium)

CI to be
reported
(including, MSS
and M&O)

Detector
class

1. Sybase
read error

Error This error is
created
during a data
read from the
database. It
is generated
as a result of
improper
format,
invalid input,
etc.

Data
Manager,
PGE
Execution
Manager, or
COTS
Component

Data
Manager,
PGE
Execution
Manager,
or COTS
Component

(Depends
on
severity)
Data
Manager,
PGE
Execution
Manager,
or COTS
Component

low if
recoverable/
fatal if
unrecoverable

COTS. If
unrecoverable,
subsystem
manager will
generate fault
and notify MSS
and M&O

Faulty/Une
xpected
input

2. Sybase
write error

Error This error is
created
during a data
write
operation to
the database.
It may a
result of
improper
format,
invalid input
data, etc.

Data
Manager,
PGE
Execution
Manager, or
COTS
Component

Data
Manager,
PGE
Execution
Manager,
or COTS
Component

(Depends
on
severity)
Data
Manager,
PGE
Execution
Manager,
or COTS
Component

low if
recoverable/
fatal if
unrecoverable

COTS. If
unrecoverable,
subsystem
manager will
generate fault
and notify MSS
and M&O

Faulty/Une
xpected
input

3. Sybase
index error

Error This error is
generated as
a result of a
duplicate key
supplied

Data
Manager,
PGE
Execution
Manager, or
COTS
Component

Data
Manager,
PGE
Execution
Manager,
or COTS
Component

(Depends
on
severity)
Data
Manager,
PGE
Execution
Manager,
or COTS
Component

low if
recoverable/
fatal if
unrecoverable

COTS. If
unrecoverable,
subsystem
manager will
generate fault
and notify MSS
and M&O

Faulty/Une
xpected
input

PGE Failure Error A PGE
terminated
abnormally

PGE COTS COTS Log info,
Perform canned
recovery
activities

Stop

6-47 305-CD-004-001

Table 6.4.6-7 Strawman List of Errors/Faults
for PRONG and PLANG (2 of 2)

Identify
Error/fault

Fault/
Error
(specify
error or
fault)

Description of
the error/fault

CI
Component
where
error/fault
occurs

CI
component
where the
error/fault
is detected

CSCI/HWCI
responsible
for
recovery
action

Severity
(fatal, warning,
high, low,
medium)

CI to be
reported
(including, MSS
and M&O)

Detector
class

Data
staging/dest
aging (data
insert into
Data server
was un
successful)

Error Data Acquire
did not work.
Could be a
result of lots
of causes.
Data Server
does not
have data.
Communicati
on problems,
etc.

Data
Manager

Data
Manager

COTS Log Info, Inform
MSS, M&O

Negative
response

1. Planning
DBMS
server
failure

Fault PLNHW PLNHW Manual
recovery
procedures
will be
defined for
M&O

Fatal MSS, M&O

2. Planning
DBMS
failure

Fault PLNHW
DBMS

PLNHW
DBMS

Manual
recovery
procedures
will be
defined for
M&O

Fatal MSS, M&O

Rules for failure handling when application domain specific (Only MSS
logging and MSS Fault Manager not involved)

•	 Propagating errors among various subsystem components must be accomplished through
Public class GLError

• All errors must be logged in real time or near real time using the MSS logging services

•	 Handling of exceptions and errors must be in accordance with the Software Development
Plan Project Instructions

•	 All events (errors, exceptions and faults) must have parent-child identifiers (UUIDs
generated by CSS provided class) for unique identification. An event at the lowest layer
generates and returns a UUID to the caller, after logging the message to the local history
log. The caller generates another UUID, and passes the received UUID as well to its caller,
after logging the event to the log. This propagates all the way up the procedure call tree.
This ensures the ability to correlate events since a management application can then analyze
the notifications and determine what notifications caused what.

6-48 305-CD-004-001

Rules when using MSS services for Fault handling

•	 Every fault must have a recovery procedure that will be handled through the interface class
by MSS

•	 Recommended severity level of errors, exceptions and faults must be provided to MSS
(framework will be provided by the interface team)

•	 Although recovery from faults is not fully automatic, hooks must be provided for building
automatic recovery for future releases

•	 MSS will notify all dependents of a failure due to a fault activation through its notification
feature

•	 The MSS notification and call back features must be used for all recoveries that cannot be
handled locally after a failure. The MSS will launch the recovery procedure and notify all
dependents of the failure.

•	 All dependencies for exception and error propagation and notification for each subsystem
component must be provided by the CI designer to MSS. Only the first level of dependency
need to be provided. The MSS will maintain the dependency tree and do the appropriate
notification and launching of a recovery method.

Other proposed rules/guidelines

•	 There will be a single operational log. There will be a capability to route outputs of test
operation to specific, separate log files.

•	 There will be a generic browse and viewing capability for the operational log which will be
available at all operator stations

•	 An object which receives an error return from another object should be able to assume that
the particular error has been previously logged by an object lower in the calling chain

•	 If the error cannot be handled, but also leads to an error within that particular object, the
object should log the error occurrence only if it is fair to assume that the object can add
informational value to the log. Otherwise, the object should refrain from logging the error.

•	 The generic error object shall be dynamically configurable to log or not log certain errors or
types of errors for a given application (managed object).

6.4.6.12 Summary

A general infrastructure and framework is presented for the uniform handling of events, errors,
faults and exceptions for ECS. A classification scheme is outlined and major subsystem errors are
identified and categorized. More errors and faults will be identified during the implementation
phase of the detailed design.

6-49 305-CD-004-001

6.4.7 Management and Operations Reporting

6.4.7.1 Overview

Operations personnel and management need to be able obtain reports about various categories of
system performance. This is a very important aspect of overall system management. Many of these
reports are generated in an ad-hoc fashion, usually in response to some problem or concern. For
example, operations may have noticed a recent slip in the average time needed to fill orders for a
certain product collection. To investigate the cause, operations may run various statistics to find
patterns which may indicate the source of the problem. The ability to produce such reports is,
therefore, an important aspect of the system management architecture.

Table 6.4-2 identifies over 20 different Management and Operations (M&O) Positions, ranging
from operators and technicians which support a particular ECS subsystem (e.g., data processing,
or ingest, or database operation) to user support staff, to capacity planning and DAAC
management. Each of these operator positions will have unique reporting needs, and they will
change with time as old problems get resolved and new ones arise.

In response, ECS provides three levels of reporting and two methods of reporting. The two
reporting levels are:

•	 reports which are specific to the operation and management of a subsystem and are
generated by that specific subsystem - for example, the physical allocation of database
resources are reported directly by the DBMS for use by a database administrator;

•	 site level reports which integrate information across several subsystems or provide
mechanisms for obtaining long terms statistics about the ECS - for example, regular
statistics about the various categories of data production and distribution; and

•	 system level reports which integrate information across ECS sites, allow comparison of
ECS operation at different sites, or support end-to-end tracking and reporting of inter-site
activities.

The two reporting methods are:

•	 ad-hoc reports - ECS will provide tools to allow operations personnel to create reports in an
ad-hoc fashion, direct them to a printing device or a file, and save such reports for repeated
execution.

•	 canned reports - operations will have a number of predefined reports which will be
executed regularly, and through their common formats allow comparison and long term
trend analysis.

The three levels of reporting correspond to the three levels of logging which are performed within
ECS and which were described in Section 6.4.4. Subsystems perform their own logging and
performance tracking to support the personnel directly involved in operating that subsystem. For
example, data processing events are logged within the Planning and Processing database, and that
database can also provide information about the current processing status for each group of data
products. Concurrently, processing events are reported via an MSS interface to the management
subsystem. The logs generated at each host are consolidated on a regular basis with a configurable

6-50 305-CD-004-001

time constant (which typically would be in the order of 15-30 minutes) into a database of site
related system events. Also on a regular, configurable basis, excerpts and aggregates of this
information are sent to the SMC where they are stored in a database for reporting and tracking of
activities and requests which span sites.

The mechanisms offered for reporting at the subsystem level depend on the specific configuration
of each subsystem. Release A subsystems provide the following off-the-shelf capabilities for this
purpose. Most of these components support regular reporting through saved reports, in addition to
ad-hoc reporting:

• Sybase database administration and reporting writing tools

• Autosys and Autoexpert reporting capabilities

• ClearCase and other configuration management tools

• HP OpenView reports

•	 Fault and performance management applications (the product selection process in this area
is still on-going)

Site and system level information is collected in a Sybase DBMS, and reporting is provided via the
Sybase report writing tools and Sybase queries.

6.4.7.2 Report Data

There is a general requirement to be able to reconstruct the performance of the ECS, its operators,

and its users as part of performance analysis, error debugging, and testing.

All logged items will be identified by date and time so that the sequence of events can be

reconstructed. The history log will be organized such that the information can be selectively

retrieved based on logical combinations of criteria such as: user, order, platform, instrument, data

product, data product type (e.g., standard, interim), production mode (i.e., routine, on-request),

operating mode (i.e., live vs. reprocessing vs. test), production string, Subsystem/CI/CSC/

subroutine/object, interface source and destination, and specific logging IDs.

Typical information logged in a history log database includes:

• operations data,

• resource data, and

• user statistics.

They are briefly discussed in the following paragraphs.

6.4.7.2.1 Operations Data

Logging of operations data is intended to establish an electronic record of key data, inputs,
outputs, and faults. Suggested classes of logging are:

Initialization Data.	 Each ECS service will log all initialization/control files, values, and
resource status each time it initializes.

6-51 305-CD-004-001

Data Transfers.	 Source/destination, data identification/type, media type, and size of all
data transfers to/from each application subsystem, including external
and internal ECS transfers. Logging will provide enough information to
associate each event with the original stimulus (i.e., a particular user’s
request). Logging will unambiguously identify the ECS source of the
data within the subsystem, and the data destination (e.g., another ECS
service, a user, or an external system). Network addresses will be
included where appropriate.

Human Actions	 Source (i.e., operator, analyst, user services, etc., and user) and values
of human operator inputs which request changes to the state or
configuration of a service.

Fault Messages	 All faults will be logged (see Section 4.???). Contents, and destination
of all operator and user alarms, alerts and notifications will be logged.

Intermediate Results	 ECS application services will be able to log selected intermediate results
of processing or activities that provide insight into the operation of the
CI. This type of logging will be configurable and can be turned on or
off by operations.

Product Generation	 Processing history and statistics will be kept and will include
information on PGE execution times, comparison to plan, the number
and timing of replans, information on the data products created, PGE
resource utilization, and QA attributes of the produced data.

6.4.7.2.2 Resource Utilization Data

ECS will monitor all computational, storage, archival, ingest, network and distribution resources
and be able to construct short term resource utilization reports (e.g., reflecting current throughput
and resource utilization rates) and long term trending (i.e., resource utilization over longer
reporting periods).

CPU CPU utilization

Computer memory Memory utilization

Local storage Local disk/mass storage utilization

Archives	 Archive utilization (by file and science product, number of bytes in use,
number of bytes in use, I/O, number and size of retrievals, number and
size of storage actions

Hard media	 Hard media distribution utilization (i.e., number of media by type
produced, number of bytes produced).

LANs	 LAN (including gateways, routers and bridges) loading and
performance.

WANs WAN traffic in and out of ECS.

6-52 305-CD-004-001

6.4.7.2.3 User Data

User satisfaction will be a key metric for ECS. ECS will be able to track an order from the time it is
placed until the order is fulfilled, either electronically or via hard media. ECS will collect statistics
on volume by distribution type, timeliness (elapsed time from order receipt to data ready to data
delivered), quality (did the user receive what was ordered), and resources utilized in servicing
users. Data products will be logged to at least the granule level. ECS will be able to provide
information about:

Order development	 Number and nature of data product requests (e.g., if product A is
ordered, product B is always ordered too); mechanism used for placing
an order (electronic or through User Services); amount of data
requested.

Order processing	 Size and development of the order queue; elapsed time needed to
respond to the various types of orders.

Order delivery	 Size of the distribution queue; data products and files included in the
order; size of order; distribution mechanism (i.e., electronic, numbers
and types of hard media); time and resource utilization for delivery (i.e.,
awaiting pickup or media creation); elapsed time from placement of
order; elapsed time to deliver the order; order fulfillment success rate.

Order satisfaction	 Incomplete orders; rejected orders; orders never picked up; orders never
shipped.

Order resources System resources utilized by ordering, and distribution over orders.

6.4.7.2.4 Security Data

Security relevant events and statistics which are of interest to security analyses will also be
collected, including:

Security Violations	 Attempted connections, requests for services which failed due to a lack
of authorization, and other types of attempted security breaches will be
reported.

Unusual Patterns	 The information collected for system monitoring purposes can also be
used to examine logged events for patterns of activities which might
indicate attempts to compromise ECS security.

6.4.7.3 Reporting Capabilities

Although ECS will include a set of canned reports, it was decided not to make these reports part of
the formal system design. The decisions is based on the following considerations:

•	 Canned reports generally include less detail and more aggregates and statistics than ad-hoc
reports. Other than that, there is little difference between ad-hoc and canned reports. In
general, a canned report is a version of an ad-hoc report, saved (and perhaps

6-53 305-CD-004-001

parameterized) for future execution. ECS operations personnel will be fully qualified to
create ad-hoc reports, and tailor any canned reports which ECS initially provides over time
to their needs.

•	 Making the canned reports part of the formal system design would place them under formal
configuration control. This would make it much more difficult for system operations to
change the regular reporting to suite their needs based on their experience with the
operation of the ECS.

The reporting capabilities provided by the individual ECS subsystems are discussed in the
individual subsystem design documents. However, it was felt that from an M&O perspective, the
topic truly crosses subsystem boundaries, and that an integrated presentation is needed. Therefore,
the remainder of this section provides an overview of the reporting capabilities which Release A
will provide. The capabilities are organized into four functional areas:

• Fault Management

• Performance Management

• Accountability Management

• Security Management, and

• Configuration Management

For each of these area, a table is provided listing various M&O topics and the corresponding
reporting capabilities. As indicated above, these reporting capabilities will be developed in an
incremental fashion involving the ECS M&O organization as well as the DAACs, but ECS will
develop models for these reports to facilitate their further development by M&O.

6.4.7.3.1 Fault Management Reporting

HP OpenView is the ECS enterprise management framework. Management data for all devices that
are monitored via SNMP agents is collected and can be displayed by HP OpenView. The operator
can select one or more icons representing the managed object(s) for which reports are to be
generated. HP OpenView provides both standard reports for real-time monitoring of network
devices and ad hoc reports for real time and near-real time monitoring of any management
information defined in the loaded MIBs.

Fault Management reports will include summary and detailed reports on managed objects' faults,
i.e., hardware, software, and network faults occurring at each site. Reports may be generated to
cover all or portions of the data captured in the database for variable amounts of time. For example,
the ground resource fault and maintenance reports generated by LSM at each site may include fault
type and description, time of occurrence of fault, effect on system, fault resolution, fault statistics,
etc., or any other parameters required.

HP OpenView provides four predefined reports for real-time fault management reporting. The
Ethernet Errors and SNMP Errors reports provide statistical information about errors that occur
from the time that the operator selects the report for operator-specified managed object(s). The
SNMP Authentication Failures report and the SNMP Events Log provide reports of past events

6-54 305-CD-004-001

that have been logged by HP OpenView, again for the operator-specified nodes (although the
SNMP Events Log can also be reported for the entire system).

The majority of fault reports will be generated on an ad hoc basis. The ad-hoc reports can be
generated on as needed basis by HP OpenView, the fault/performance management application, the
report generation application, and the trouble ticketing application to include detailed and summary
information on the fault management of ground resources as required by the operator.

6.4.7.3.2 Performance Management Reporting

Performance Management has a number of different aspects. It includes the performance aspects of
the various system resources, as well as the performance of ECS services with respect to their
service requests. The reporting capabilities are provided by ECS performance management tools
(which are still in procurement), ECS COTS tools used by the various services, and Sybase report
writing tools (to extract performance data from the information in the site and SMC history log
databases).

6.4.7.3.3 User Services and Accountability Reporting

These reports will be based on accountability data stored in the Sybase management database and
will be generated using the Sybase report writing tool. The purpose of these reports is to track and
profile ECS usage by external (e.g., science) users. The purpose of these reports is to identify
usage trends to identify service needs/shortfalls and assist in the planning of future capacity needs.
For Release B, this reporting area will include accounting reports.

6.4.7.3.4 Security Management Reports

Security management application report on security events for its management domain, i.e., a
given site (for LSM), or the entire system (for EMC). The security management application is
currently in the procurement phase (no products have been selected yet). At a minimum, the
products that will be selected will provide the capability to store security management data in the
management database, from which the Sybase report generator will be capable of creating standard
and ad hoc security management reports. The security management application may or may not
provide separate reporting capabilities. In addition, virus detection and other security reports will
be provided via an ad hoc reporting capability and generated on an as-needed basis

6.4.7.3.5 Configuration Management Reporting

The Configuration Management applications (Baseline Manager, Software Change Manager, and
Change Request Manager) will be COTS products and will provide functionality which will
support the management of ECS resources. These products will track what constitutes ECS
baselines; make available functional and physical characteristics data needed to operate and
maintain the system; aid in managing system requirements and changes; and provide report
generation capabilities.

Custom reports generation will be supported by the built-in capabilities of the ClearCase and other
CM COTS.

6-55 305-CD-004-001

Table 6.4.7-1. Fault Management Reports
Report Topic Report Contents

Ethernet Errors Available only for nodes using the HP-UX MIB. Provides a graphical
representation of real-time Ethernet errors detected on operator-selected
nodes.

SNMP Errors This report provides a graphical representation of the SNMP protocol errors
detected by the SNMP agent on the operator-selected node(s). The
operator has various options for changing the view of the graph and
options for printing or saving the report.

SNMP Authentication
Failures

This report lists the management systems that caused an authentication
failure on the operator-selected node(s). An authentication failure occurs
whenever the management system sends an SNMP request with an invalid
community name. The operator has the option of sorting the report and
save or print the report.

SNMP Events Log This log provides a listing of all SNMP events reported to HP OpenView for
the operator-selected node(s). The logged events are presented in
chronological order, with the most recent events presented at the bottom
of the list. The operator can set filters for the events to be displayed in the
log, clear filters, view a description for a selected event in the log, delete
events from the log report, sort events, print events, or save the log report
to file.

Site Host Errors This report provides a summary of the types of errors logged for each host
at the site over an operator-specified period of time. The report will be
generated by an OTS fault management application (procurement in
progress). Reported faults include
• Performance Degradation (as measured against thresholds)
• CPU errors
• Memory errors
• Disk errors
• File system errors
• Archive errors
• Network errors
• Queue errors
• Critical processes missing
• Processes looping
• Processes failed
• Cron jobs missing
• NFS errors

EMC Host Errors The EMC Fault Errors report will be identical to the Site Fault Errors report,
except that the report will summarize the type of errors logged at each site
instead of the number of errors logged on each host at the site.

Trouble Status This report provides a summary of the problems reported at the site for
which trouble tickets have been opened, including:
• Number of trouble tickets opened
• Number of trouble tickets closed
• Number of trouble tickets remaining open at end of time frame
• Average length of time between trouble ticket opening and closure

6-56 305-CD-004-001

Table 6.4.7-2. Performance Management Reports (1 of 4)
Report Topic Report Contents

System Capacity Utilization

CPU Load Report The CPU load report provides a graphical representation of the average
number of jobs in the run queue for each selected node. The graph plots
the average number of jobs (over the past 1, 5, and 15 minutes) starting
from the time that the report is selected, and continues to chart the data as
long as the report window is open or iconified. If the window is left open (or
is opened after being left iconified), performance trends for the selected
host(s) will begin to emerge. This report is only available for HP hosts using
the HP-UX MIB.

Interface Traffic This report provides a graphical representation of packet statistics for
operator-selected SNMP node, including the total number of incoming and
outgoing packets, and the corresponding counts of packets with errors.

Ethernet Traffic This report, available only for nodes being monitored by the HP OpenView
SNMP agent, provides a graphical representation of ethernet packet
statistics for operator-selected nodes.

SNMP Traffic This report provides a graphical representation of incoming and outgoing
SNMP traffic on operator-selected nodes. It is a useful tool for determining
the percentage of traffic to and from the selected node(s) that is due to the
SNMP management of the node(s).

SNMP Operations This report provides a graphical summary of the SNMP operations
requested of and performed by the SNMP agent on the selected node(s).
The graph provides a display of the number per second for each specific
type of SNMP operation that has occurred since the report was started.

SNMP Event Log Provides a list of SNMP resource utilization events for selected managed
object(s). These events will generally represent occasions when resource
utilization thresholds are exceeded. This report can be filtered to only allow
the display of threshold events.

Site Host Resource
Utilization

The site host resource utilization report provides an overview of the host
utilization over the time frame specified by the operator. The overview
includes a look at minimum, maximum, and average values over the
specified time frame.
For each host at the site, the report will list minimum, maximum, and average
values for the following performance metrics:
• Percentage of physical memory utilized
• Percentage of CPU time utilized
• Rate of physical disk I/O's
• Rate of logical disk I/O's
• Rate of packets sent (per second)
• Rate of packets received (per second)
• Rate of LAN collisions (per minute)
• Rate of LAN errors (per minute)
• Number of users
• Number of processes running
• Rate of process swaps (per minute)
• Rate of system calls (per second)
• Number of processes in run queue

6-57 305-CD-004-001

Table 6.4.7-2. Performance Management Reports (2 of 4)
Report Topic Report Contents

EMC Host Resource
Utilization

The EMC Host Resource Utilization report will be identical to the Site Host
Resource Utilization Report except that resource utilization information will
be provided for all hosts at all reporting sites over the operator-specified
sites and time frames.

Resource Capacity
Planning Reports

These reports will be used to detect the need for required system capacity
upgrades. HP OpenView provides disk space reports for systems using the
HP-UX MIB. Other resource capacity planning reports will be provided by
the fault/performance management application on an ad hoc basis.
As an example, the disk space report provides:
• Name of the file system
• Total number of kilobytes of disk space
• Number of kilobytes used
• Number of kilobytes available
• Percent of total capacity used
• Directory name on which the file system is mounted

Storage Management Utilization and Performance

Storage Management
Performance Report

The report provides information about archive activities, including archive
read and write statistics in terms of staging and destaging requests, file
transfers, data volume, and I/O throughput.

Storage Utilization The report provides information about archive storage resource utilization
and data growth rate.

User Services Utilization

User Service Performance User service feedback information will be received either electronically
(through a user screen or through e-mail), by telephone or by surface mail.
User feedback summary information received from any source is captured
using a trouble ticketing application, or by using office automation tools.
The user service performance report will be generated periodically to
provide user feedback statistics and include:
• Number of complaints received per reporting period by method of
receipt (e-mail, fax, letter, phone, in person)
• Number of complaints as % of the total number of orders or
requests per month
• Number of kudos received per month
• Number of kudos as a % of total orders or requests received per
month

6-58 305-CD-004-001

Table 6.4.7-2. Performance Management Reports (3 of 4)
Report Topic Report Contents

Order Processing and Distribution Performance

Order and Distribution
Performance - Detail and
Summaries

The report provides detail and summary information to analyze the order
turn-around time. Any associated delays, if any, can be investigated and
corrected to improve performance. The report lists information about each
data distribution request (e.g., user, data type, times of key events in the
distribution event flow, and any quality data that may be available). The
summary portion provides totals and averages for the reporting period of
key performance characteristics (e.g., total order volume, average elapsed
time for each step in the event flow) as a whole, as well as daily and weekly
totals and averages. The report also provides information on current and
backlog trend.

Media Distribution Profile This report provides statistics on methods of data distribution for a specified
reporting period, such as Electronic Distribution via various transfer
mechanisms, and hard media distribution by media type.

Data Set Order History This report provides order performance and volume statistics for each
product group (e.g., dataset or collection) for the reporting period, and lists
the most frequently ordered products.

Order and Distribution Error
Summary

The report provides summaries of error occurrences during the reporting
period, grouped and sorted by type of error, type of product, and type of
distribution media.

Returned Product Summary This report provides statistics on all products returned by users for the
reporting period including product type, reason for return, action, and
status.

Ingest Performance

Ingest Status Provides operations staff with the capability to view status on ongoing
ingest processing. Operations staff may view a specific request (identified
by request ID), all ongoing requests entered by a specified user/external
data provider (e.g., TSDIS), or all ongoing requests. Displayed status
includes the external data provider, ingest request ID, total ingest data
volume, and current request state (e.g., "data transferred").

Ingest Request History The report supplies operations staff with a view of ingest request
completion performance. The report can be generated for specified time
periods and executed on a regular basis. It provides a detailed log of the
ingest requests in the reporting period (including requester, data source,
data type, the times of various ingest events such as request receipt and
completion, data volume, etc.).
The report also provides summary statistics for the reporting period, such
as completed vs. unsuccessful requests, backlog development, average
ingest volumes and processing times broken down by various categories.

6-59 305-CD-004-001

Table 6.4.7-2. Performance Management Reports (4 of 4)
Report Topic Report Contents

Ingest Data Set History The report supplies operations staff with a view of ingest operation by data
type (it is specially sorted and summarized version of the ingest request
history report).
The report can be generated for specified time periods and executed on a
regular basis. It provides a detailed log of the ingest requests, broken down
by data category (including requester, data source, data type, the times of
various ingest events such as request receipt and completion, data
volume, etc.), information about current status, and summary statistics
similar to the request history report.

Ingest Errors The Ingest Error Report is a summary report of the frequency of errors of
different types encountered during ingest processing. The report consists
of two sections--Data Set Summary and Error Class Summary. The Data Set
Summary lists a count of reported errors, by error class, for each data set
type. The Error Class Summary lists a count of reported errors for each error
class.

Data Processing Performance

Processing History - Detail The report provides a detailed account of all data processing activities
performed in the reporting period at the product group, product, and PGE
level.

Processing History -
Summaries

The report provides summaries of data processing activities and resource
utilization at the product group, product, and PGE level. The summary
include totals (e.g., the count of products produced), as well as averages
and other aggregates (e.g., average, minimum and maximum run & CPU
times vs. predicted run times).

Production Workload and
Turn-around Time

The report provides statistics about production turn-around (i.e., elapsed
time between submission of a data processing request and its completion),
production delay (i.e., scheduled vs. actual completion time); and
production workload (i.e., currently scheduled work).

Production Status The report compares the active production plan with current processing
status at the product group, product, and PGE level, and gives account of
production backlogs.

Production Errors The report provides a detailed list of all data processing errors which
occurred in the reporting period, as well as summaries by product, product
collection, and PGE.

Quality Assurance Summary The report provides a detailed list of QA exceptions which occurred during
the reporting period, and summary statistics of QA results for each product
type.

6-60 305-CD-004-001

Table 6.4.7-3 User Services and Accountability Reports
Report Topic Report Contents

User Characterization This report will include information on ECS users identifying each user
class, the number of users in each class, and a categorization of their
interests, affiliation, and access patterns.

User System Access Profile This report profiles user system accesses and time spent on the system to
help analyze the efficient usage of the system resources and identify
probable bottlenecks. The report will include statistics such as the
following, in total and broken down by user class:
• Number of Data Items Searched/Browsed
• Number of Local On-Line System Accesses by External Users /
DAAC Staff
• Average Session Times
• Number of separate user accounts which accessed the system
• Number of Accesses by Access Mechanism (e.g., Version 0, http,
ftp, BBS).

Utilization of User Services
Personnel

This report provides the information on user contacts in handling any ECS
related inquires with user services personnel, and includes statistics such
as the following:
• Number of contacts, by method (e.g., phone, e-mail, US mail, in
person)
• Number of User Inquires: Number of inquires for each of following,
by topic (e.g., Information Requests, Data Order Inquiries, Data Usage
Questions).
• Number of DAAC / non-DAAC Referrals
• Number of Non-DAAC Referrals
• Number of Data Documentation Requests

Table 6.4.7-4. Security Management Reports
Report Topic Report Contents

Security Compromises Security violation statistics will be generated regularly to report any security
violations or attempts of intrusions. This report will include the total number
of attempts detected, a categorization by type of violation and method, by
server, and by data category.

Table 6.4.7-5. Configuration Management Reports (1 of 3)
Report Topic Report Contents

Configured Articles The report is an indented list detailing the exact, as-built configuration of
deployed, ECS configuration items. Identifies control items and associated
assembly structures that comprise configuration items as operationally
baselined at ECS sites.

Baselined Documents The report is a list of the documents applicable to deployed system
resources. Each document associated with specified baseline is identified,
title, version, and date are provided, and the latest document change
notice is referenced.

6-61 305-CD-004-001

Table 6.4.7-5. Configuration Management Reports (2 of 3)
Report Topic Report Contents

As-Built Resources This report identifies individual control items and assemblies deployed
system-wide, including their revision level.

Baseline Manager Profiles This report lists full or partial details about selected system resources
(hardware, software, and assemblies), documents, and baselines. The
provided information varies depending on the profile selected by the
operator.
• For each baseline, the report lists site, version, type, associated
release, approval date, effective date, prior version, and status.
• For each configuration item, the report lists identifier, name,
description, serial number (if any), associated specification identifier,
associated drawing number (if any), revision level, revision date, and
supplier.
• For each configured device, the report lists identifier, description,
release date, install date, implementation status, point of contact,
characteristics, and location.
• For each individual, hardware and software resource, the report
lists identifier, version, developer/vendor, make/model, serial number (if
any), release date, install date, implementation status, scope, point of
contact, characteristics, dependencies.
• For each document, the report lists identifier, title, publisher,
publication date, approval level, status, and latest document change notice

Baseline Changes This report lists the as-built configuration items, assemblies, and control
items that differ between two compared sets of baselined resources and
depicts the listed items as added, deleted or revised, as appropriate. Also
lists the configuration change requests implemented with each of the
baselines.

Software Library Objects This report identifies all or a selected subset of the objects contained in a
software library, including its directories, principle elements, derived
objects, and links. For each identified object that also exists in the user's
present view of the library, the view rule that it satisfies is also presented.

Software Library Builds This report lists the build ingredients used in creating specified, derived
objects, such as the user who created the build, the host and view used for
the build, the date and time of the build, file versions used as input, the
derived objects produced by the build, the values of make macros used,
and the build script executed.

Software Library Version
Tree

This report lists part or all of the version tree of one or more software library
elements.

Software Library Registered
Views

This report lists the views registered on the local host.

Software Library View
Specification

This report is a list of the specifications (rules) that define a specified view of
the elements in the software library.

Software Library Checkouts This report lists the library elements that are currently checked out.

6-62 305-CD-004-001

Table 6.4.7-5. Configuration Management Reports (3 of 3)
Report Topic Report Contents

Software Library Event
History

This report lists logged event records in reverse-chronological order. The
following kinds of lists can be produced:
• Source Data History - events concerning the library's file system
objects, including derived objects
• Type History - events concerning metadata types that have been
defined in the library
• Storage Pool History - events concerning the library's storage pool
• Library Object History - events concerning ClearCase's library data

Change Requests This report provides details about individual configuration change requests
(CCR), non-conformance reports (NCR) or deficiency reports (DR), each of
which is a proposal to change the configuration of a baselined system.

Change Request This report provides a list of submitted CCR/NCR/DRs and selective
information about each one.

Change Request Metrics The contents of the report depend on operator selection and include, for
example, a table of problems by project by state or severity or assigned
engineer and severity. Report contents can be sorted and grouped by a
number of other characteristics. In addition, it is possible to obtain statistical
graphs, e.g., of problem distribution by severity, or of repair time and
difference between estimated and actual fix time.

6.5 User Interface Architecture

The user interface architecture for Release A ECS has two major components. The first is the
science user interface, which is achieved by reuse of the Version 0 Client. The second is the
operator user interface, which is both custom development and COTS, for Release A ECS. Each of
these components are described in the following sections.

6.5.1 Release A Science User Interfaces

In order to reduce technical risk and schedule pressure for the design and development of Release
A ECS, the decision was made to reuse the Version 0 Client as the ECS Release A client. The
Release A client is the primary agent for science users to access ECS services and data. The
Version 0 client provides the following functionality for users:

•	 Directory Search - allows a user to retrieve high-level information about data sets held at the
DAACs

*	 Access to the Global Change Master Directory (GCMD) - allows a user to retrieve high
level information on earth science datasets which may not be held as V0 data sets at the
DAACs.

•	 Guide Search - Provides the user with detailed descriptions about data sets, their
acquisition, projects they are associated with and the data centers that hold them

•	 Inventory Search - allows a user to identify specific observations or collections of
observations (granules) that are available from a data center.

6-63 305-CD-004-001

•	 Browse Information - provides the user with a visualization of the granules resulting from
an inventory search.

•	 Product Ordering - allows a user to order data products based on the granule information
obtained from an inventory search.

In order to reuse the Version 0 Client as the Release A Client the following approach has been
implemented:

1)	 System level IMS components from V0 substitute for the functionality that the Client and
Data Management Subsystems would provide in Release B ECS.

2)	 The V0 Client is incrementally improved so that it supports access to the ECS components
at Release A.

3)	 The ECS Version 0 Gateway will provide translation between Version 0 protocols and the
ECS protocols to allow the V0 Client to access ECS services and data.

A full description of the modifications to be made to the Version 0 client and the integration of the
client with ECS for Release A can be found in the document "Implementation Plan for the Release
A Client" (441-TP-001-001).

The ECS Release B user interface architecture and design are on-going and will be documented in
the Client Subsystem volume of the Release B ECS System Design Specification.

6.5.2 Operator User Interfaces

One key element of the success of the ECS program is the user-friendliness and consistency in
design of the graphical user interface (GUI). This section addresses (1) the GUI framework
within which the ECS GUI will be designed, (2) the GUI implementation method to be used in
developing the GUIs for each ECS Release A Subsystem, (3) the GUI design information that is
contained in the DID 305 Volumes for each ECS Release A Subsystem, and (4) an example of a
GUI template to be used in developing GUI screens that are compliant with the ECS User Interface
Style Guide, Version 5.

This GUI Framework will be used in Release A to develop the Operator User Interfaces. This
framework will also be used in future releases to develop the remaining Operator and Science User
Interfaces.

6.5.2.1 GUI Framework

The ECS GUI framework represents a consensus between the ECS human factors engineers and
the ECS project personnel as to the overall ECS GUI design concepts that will be employed in
ECS Release A. The ECS GUI framework has three segments. The first segment consists of the
GUI metaphors and interaction paradigms for the ECS desktop and workbench applications. The
second segment consists of the ECS GUI design principles and guidelines contained in the ECS
User Interface Style Guide. The final segment consists of the ECS GUI screen layout templates
and widget sets used with the Builder Xcessory GUI tool to develop the actual ECS GUI screens.
The segments are described in the following subparagraphs.

6-64 305-CD-004-001

GUI Metaphors, Interaction Paradigms, and COTS Conventions. The formal definition of GUI
metaphors and user interaction paradigms is fundamental to the successful design of GUIs. The
selection of the Open Software Foundation's Motif user interface standard for ECS greatly
simplifies the selection and implementation of the metaphors and interaction paradigms for the ECS
program. The GUI metaphor and interaction paradigms are divided between those that support the
design of the ECS desktop and those that support the design of the ECS workbench applications.

ECS Release A supports two desktops. The preferred desktop uses the new Common Desktop
Environment (CDE) standard. This desktop will be installed on those workstations who run CDE.
The existing ECS Window Manager is installed on the remaining workstations, running as a
service on the native desktop that runs on each workstation. CDE will be standard for Release B.
Therefore, the CDE will become the ECS desktop. The ECS desktop employs the use of Motif
compliant icons and iconic 'drag and drop' processes and multiple desktop workspaces as the
primary desktop metaphors. The ECS desktop will employ a standard set of icons that represent
the object type or process to which the icon is intended to be associated. The selection of an object
or process icon invokes a specific action sequence that greatly simplifies the operator's interactions
with the system. Object icons include data, documents, and other sorts of information that are
manipulated by ECS by means of a variety of desktop office automation tools or through processes
available from ECS applications built into the ECS workbench. Process icons represent the office
automation tools available on the ECS desktop or tools and applications available on the ECS
workbench.

Multiple desktop workspaces represent another metaphor that will be used in the ECS desktop.
Multiple desktop workspaces provide operators with the capability to perform independent ECS
functions using separate instances of the same desktop workspace. This will permit operators to
lay out their desktop workspace in one manner for one ECS function, while maintaining a separate
desktop workspace to support another ECS function. This provides operators a great deal of
flexibility in optimizing their modes of operation for each ECS function and for tailoring their
desktop environments to their own preferences. Multiple desktop workspaces may be 'saved' as
icons by operators, allowing them the capability to 'restore' the workspace to the configuration that
was saved - even after logging off the system and logging back on.

The major metaphor of the ECS workbench applications is the use of standard Motif screen
layouts, including the use of pull-down menus, dialogs, and message boxes, among other
widgets. Those COTS applications which employ a modifiable user interface, are tailored to
comply with the ECS User Interface Style Guide to the maximum extent practicable.

The interaction paradigms of the ECS desktop and workbench employ variants of the Motif Object-
Selection Model. This model controls the manner by which operators navigate the workspace. The
ECS desktop employs an iconic object-process interaction paradigm. This paradigm defines the
basis of iconic representation on the ECS desktop and the relationship between objects (entities
which operators manipulate, such as documents) and processes (entities which manipulate
objects). Simply stated, objects can be manipulated (processed) by 'dragging-and-dropping' the
object icon onto an appropriate process icon (e.g., in order to print a document).

Applications on the ECS workbench are also designed to implement the Motif Object-Selection
Model. However, instead of the iconic object-process interaction paradigm, applications will use

6-65 305-CD-004-001

(a) traditional menu or dialog-based interaction techniques and (b) interactions using iconic
processes located on a Motif Toolbar located directly below any pull-down menus on the screen.

ECS User Interface Style Guide. The second component of the GUI Framework is the ECS User
Interface Style Guide, Version 5. The Style Guide documents the GUI metaphors and interaction
paradigms described above. Further, the Style Guide contains human factors rules, principles,
conventions, and heuristics as standards for designing and implementing ECS operator/user
interfaces. Its purpose is to guide ECS GUI Developers in the creation of effective, user-friendly
interfaces. Consistent application of these standards will ensure the implementation of a common
"look and feel" across ECS operator/user interfaces.

ECS GUI Screen Development Templates and Widget Sets. The templates and widget sets selected
specifically for the ECS program are used to design and implement ECS workbench applications
that must be developed using custom code and COTS software applications that are custom
'wrapped' to support a consistent "look and feel" and comply with the Style Guide. The Builder
Xcessory tool has been selected as the GUI Builder for those workbench applications that require a
custom interface. The Builder Xcessory tool has been customized to create an ECS standard, using
User-Defined Widgets that represent pre-defined GUI development templates and pre-defined
styles that contain approved attributes (e.g., color, font, font point size) for any additional widgets
that are created. Each pre-defined widget and pre-defined attributes have been developed to comply
with the human factors guidelines contained in the ECS User Interface Style Guide, Version 5.
Appendix B of the Style Guide lists and illustrates these ECS standard Widgets.

To comply with many of the human factors guidelines contained in the ECS User Interface Style
Guide, the GUI Developer/Programmer only has to use the pre-defined widget templates and style
manager containing the pre-defined widget attributes to develop the GUI screens. This method has
been developed to achieve human factors-compliant GUI screens by rewarding the GUI
Developers/Programmers with a rapid development process that meets established GUI
development requirements. This method permits GUI Developers/Programmers to focus their
effort on the aspects of GUI development that is most important to the users, namely, the
implementation of meaningful operator interactions and dialogs in a windows environment.

6.5.2.2 GUI Implementation Method

The development of the ECS GUI follows accepted human factors practice for screen layout and
design and involves the rigorous application of knowledge in human factors research of the
human-computer interface. As shown in Figure 6.5.2-1, the practical application of this
methodology is proceeding through three stages. The first stage, GUI Development Guidelines,
which involves establishing the GUI framework (discussed above) has been completed. This
resulted in a revision to the ECS User Interface Style Guide, Version 4. The second stage, GUI
and Screen Layout Templating, involves (a) the definition of the ECS desktop and
(b) development of GUI templates and styles for use in conjunction with a GUI Builder tool.
Among other things, this has resulted in the development of GUI templates that assist and structure
the GUI developer's use of the GUI Builder Tool (i.e., Builder Xcessory). The third stage, GUI
Generation, involves the preparation of actual screens using the GUI builder, templates, and
guidelines. The human factors engineers and the GUI designers cooperatively design each ECS

6-66 305-CD-004-001

subsystem GUI through a three-step process, as discussed below. Finally, the completed
products, the GUI guidelines, templates, and screens are assessed using established human factors
criteria and user feedback. Revisions and updates are prepared as a result of these assessments and
feedback.

As stated, the implementation method defined above ties the knowledge base of human factors
research on human-computer interactions (HCI) to best commercial practice for the rapid
development of GUI screen layouts. The theoretical underpinnings of this method are illustrated by
the model shown in Figure 6.5.2-2.

As shown in the figure, consideration is given to the ECS design requirements for the computer
software configurations (CSCs) that possess a custom user interface. The methodology requires
the identification of the data input and output requirements of the CSCs. On the other hand, the
methodology requires consideration of the human performance requirements associated with
performance of tasks using the system. This includes the identification of data, command and
control, and task requirements of the human operator in system interactions.

GUI Development
Guidelines

GUI & Screen Layout
Templating

GUI Generation

GUI standards & guidelines
- Display
- Style
- Design
- Interaction paradigms

Desktop
- Desktop applications
- Iconic applications

Workbench
- Custom applications
- COTS

Human & CSC
- Workflow
- Data flow

ECS GUI templates

Establish
GUI

framework GUI
development

guidelines
(update &
revision)

Define
GUI

Desktop

Define
GUI

workbench
Developer
templates

Task &
behavioral

requirements

Screens

HFE Assessment & User Feedback

Figure 6.5.2-1. The GUI Implementation Method for ECS Release A

6-67 305-CD-004-001

CSC Operator
• Command &

parameter inputs
• Data to publish

out

• Data requirements
• Command/control

requirements
•Task requirements

Dialog Plan

Screen Packages

Style guidelines
Design guidelines

Screens

Task analysis
Behavioral

expectations
Workflow analysis

Style guidelines
Design guidelines
Display standards

GUI Builder
Tool

User
Feedback

HFE
Assessment Update &

Revise
Standards/
Guidelines

Figure 6.5.2-2. Model for the Development and Assessment
of the ECS Release A GUI

The human factors engineer applies knowledge of the human factors research on HCI and acquired
knowledge about the computerized system to assist the ECS Subsystem Designer in the
development of the workflows for each ECS subsystem. Workflow analysis is used to determine
the human-computer dialogs required for the human to interact with the computer to accomplish
specified tasks. The human factors engineers and GUI Designers then take these dialogs, and
using the GUI style and design guidelines selected specifically for application to the ongoing
development effort, prepare a series of screen packages (or screen layout diagrams) that provide
storyboards for GUI Developers to use in developing actual computer screens. The GUI
Developers use the GUI Builder Tool, templates, and widget set to rapidly develop computer
screens that implement the dialogs and storyboard screens. The resulting screens can be reviewed
by the human factors engineers for compliance with the GUI style and design guidelines. At this
point, completed sets of screens can be subjected to a series of human factors assessments and user
feedback on the adequacy of the HCI in meeting program and user goals. Finally, comments and
human factors issues can be used to update and revise the GUI guidelines as well as the screens
themselves. In this manner, the model shown in the figure depicts a complete set of HCI dialogs
and screens that can be rapidly developed and maintained by the human factors engineering and
ECS development staff.

6-68 305-CD-004-001

Using the model discussed above, the practical implementation of an ECS Subsystem GUI is
conceived of as an iterative, three-step design process, as shown in Figure 6.5.2-3. This process
is depicted by the gray area in the figure to involve workflow analysis, preparation of screen
packages, and development of the GUI screens. As shown in the figure, the data required by ECS
operators/users is used to analyze the workflow requirements of information manipulated by ECS
operator/users in performing functions assigned to the CSCs. The workflows provide a series of
block diagrams that step a hypothetical ECS operator/user through each action required to interact
with the ECS subsystem software. The workflows provide the input required for human factors
engineers and GUI Designers to design the screen layouts using screen layout diagrams. The ECS
User Interface Style Guide is used as the source of human factors guidelines to support the design
of screen packages. Each diagram in the screen packages relates to the operator interactions
identified in the workflows. Finally, the third step of this process is to develop the GUI screens
using the GUI Builder tool. The screen packages are handed off to the GUI
Developer/Programmer for implementation using the GUI Builder, the templates, widgets, and
GUI style attributes that have been defined directly into the GUI Builder tool itself. The GUI
screens prepared using this three-step, iterative process can be subjected to a series of internal
reviews, human factors assessments, and external operator/user reviews to provide the necessary
feedback required to improve the screen layouts. Iterative reviews of development GUI screens
may occur at any stage in the GUI development process.

Workflow

Screen Packages

Screens

Data Items

(Edit, Input, Display)

ITERATIVE GUI DESIGN

ECS SUBSYSTEM GUI DESIGN

ECS User Interface

Style Guide

GUI Builder Tool,

Templates & Styles

(Diagrams) Evaluation

Figure 6.5.2-3. Description of the Three-Step ECS GUI Design Process

6-69 305-CD-004-001

6.5.2.3 Description of GUIs

Preparatory to the pursuit of the three-step GUI design process depicted in Figure 6.5.2-3, each
ECS Release A Subsystem development team is required to specify their data requirements with
respect to the data that must be available to an operator/user in order for them to perform functions
associated with the subsystem. Operators/users interact with or manipulate data in at least three
ways, namely, edit, input, and observe data on a display. Data on these interactions provide the
information required to define the operator workflows and screen layout displays for each ECS
Release A Subsystem. Later, each ECS Release A Subsystem development team will prepare the
workflows, screen packages, and screens based, in part, on these data. The required data on
interactions include identification of the functions and associated data elements, and specific
identification of the operator/user interaction with each data element, viz., whether it is 'display
only,' (i.e., data elements which are displayed but will not be changed), 'edit,' (i.e., data elements
whose current value will be displayed, but may be changed by the operator/user), or 'input only,'
(i.e., data elements whose current value is blank or null, and which will be entered on that
occasion).

Each ECS Release A Subsystem development team prepared a complete listing of the data
elements required for operators/users to perform functions using the subsystem, in accordance
with the interaction data requirements. The information for each ECS Release A Subsystem is
located in the relevant GUI section of the DID 305 Volume assigned to each ECS subsystem.

6.5.2.4 Example of a GUI

The GUI for ECS workbench applications makes use of Motif widgets, including, main windows,
pull-down menus, toolbars containing icon buttons, button bars containing push buttons, and
application workspaces that may be used to display a variety of widgets such as, radio boxes,
scrolled windows, bulletin boards, and other container widgets. Figures 6.5.2-4 and 6.5.2-5
present a facsimile of the "look and feel" of a hypothetical instance of an ECS workbench
application. Figure 6.5.2-4 shows the screen structure, and Figure 6.5.2-5 shows a sample
screen print-out illustrating the implementation of the structure. These widgets and whole sets of
others are accessible to the GUI Developer/Programmer through a widget palette provided with the
Builder Xcessory software tool. Widget attributes have been defined for each of these widgets in
accordance with the ECS User Interface Style Guide, Version 5. Additionally, collections of pre
defined widgets have been prepared using Builder Xcessory that provide a set of approved GUI
development templates for use by GUI Developers/Programmers in developing GUIs for specific
ECS Release A subsystems. The GUI development templates provide a full range of approved
screen layouts that comply with the color, font, font size, screen positioning of widgets, and
widget layouts defined in the Style Guide. GUI Developers/Programmers can rapidly develop their
GUIs using widget collections that already comply with the Style Guide. GUI
Developers/Programmer can readily make modifications to each instance of a GUI development
template, by adding and deleting widgets, or by changing the widget attributes of those attributes
that are not controlled by the ECS User Interface Style Guide. This affords the GUI
Developer/Programmer a standardized GUI development framework that encourages innovation in
GUI design. It is flexible and ensures incorporation of human factors principles by providing
structure, as illustrated in the figure.

6-70 305-CD-004-001

Icon Button

Title

Edit Mode Help

Main Window

Cascade Button (Pull-Down Menu) Menu Bar

Toolbar
(provides
pop-up labels

Monitor

New

Save

Open

Save A

Print

Exit Save Changes

Cancel Changes

File
Push Buttons
on Pull-Down

s

Menu for buttons)

Form Pop-up Label
(contains
Toolbar
and Button Box) Top-Level

Shell

Cascading
Pull-Down Menu

Separator

Push Button Button Box

Figure 6.5.2-4. Sample Structure for an ECS Graphical User Interface

6-71 305-CD-004-001

Figure 6.5.2-5. Print-out of Sample Showing ECS GUI Screen Structure

6-72 305-CD-004-001

7. Methodology Overview

The remainder of this document provides further detail on the design of ECS hardware and
software architectures as well as individual subsystems. Much of this presentation reflects the
object-oriented design methodology adopted by ECS. The rest of this section includes an overview
of this methodology to aid the reader of the remaining sections.

7.1 O M T

Object-oriented methodology is a development paradigm that organizes a system as a collection of
objects, each of which has data structure and behavior and which has meaning within the context
of the problem that is being modeled. The methodology being used on the ECS Program is the
Object Modeling Technique (OMT) set forth by Rumbaugh, et al in the book Object-Oriented
Modeling and Design. In object-oriented methodologies, the analysis and design are developed in
terms of graphical models. The foundation of OMT is the object model, in which the complete
static structure of the system is captured.

The following material provides a tutorial on how to read an OMT object model. The tutorial is in
the form of a walk-through of a sample model. Although the sample does not use all of the
available notation, it uses most of the notation that will be seen in models that have been
constructed for ECS. Before starting the walk-through, the following definitions have to be
understood.

•	 Object: An abstraction of something in the problem at hand, characterized by a unique
name, distinct properties, and well defined behavior.

•	 Class: A group of objects with the same meaning, properties (attributes), behaviors
(operations), and relationships (associations) with other objects.

•	 Generalization: Objects can be generalized into a more generic object class. For
example, guides, program descriptions, and general system descriptions could be
generalized into a common class called documents. The document class is then called the
parent class of guides, program descriptions, and general system descriptions.

•	 Attribute: a named property of a class, describing data values held by each object in the
class. Classes describe the data property (e.g., color). Each object holds a value (e.g.,
green) for each attribute defined for the class to which the object belongs.

•	 Operation: a part of the behavior of a class. Collectively, all of a class' operations define
the things that objects of the class can do.

•	 Link: a physical or conceptual connection between object instances -- an instance of an
association (see the next definition).

•	 Association: a group of links with common structure and common meaning -- a set of
potential links.

•	 Aggregation: The model also recognizes a specific kind of relationship, called
Aggregation. It indicates that objects of one class (the aggregate) are composed of objects
belonging to other classes (the components).

7-1 305-CD-004-001

The following design document uses several types of modeling diagrams:

•	 Object Model Diagrams depict the classes of objects which make up a design, their
attributes and operations, and how they are related to each other. In essence, the concepts
presented in the above list are presented diagrammatically (see Section 7.2).

•	 Event Trace Diagrams depict a sequence of events that occur in a scenario. At the
preliminary design level, scenarios are concerned with the interactions that take place
among objects. Events, therefore, represent messages which are sent from one object to
another (see Section 7.3).

•	 State Transition Diagrams are used occasionally in the design to show how the messages
affect the internal state of an object, and in particular, the events which cause state
transitions (see Section 7.4).

7.2 OMT Diagram Tutorial

Figure 7.2-1 shows the notation used by the ECS Object Models. The rectangular boxes in the
model denote classes. Each box, shown in full detail, consists of three sections. The name of the
class fills the top section, its attributes go in the middle section, and its operations in the bottom
section. Sometimes in high level drawings, only the top section of the box, showing the class
name, is shown. A class may be the generalization of several other classes. In Figure 7.2-1, the
"Parent Class" is the generalization of two other classes, each called a "Derived Class." Derived
classes always include the attributes and operations provided by their parent classes. The diagrams,
therefore, only show any additional attributes or operations which the derived class may have.

Aggregation

Parent Class

Attributes

Operations

Association

Inheritance

Derived Class

Attributes

Operations

Derived Class

Attributes

Operations

Component Class

Attributes

Operations

Component Class

Attributes

Operations

Aggregate Class

Attributes

Operations

Multiplicity

Figure 7.2-1. Object Model Diagram Notation

Figure 7.2-1 also shows that there are two classes, each called a "Component Class", have been
aggregated into another class, called the "Aggregate Class". There may be design rules which
determine how many components of each class an aggregate may have. This is shown by

7-2 305-CD-004-001

providing an indication of the "Multiplicity" in the diagram. In 4-1, the left component may occur
any number of times (zero, one, or many), the right component must occur exactly once. Finally,
classes may have relationships, indicated by simple lines. On the design diagrams, they are labeled
with the name of the relationship, and they carry an indication of multiplicity.

Figure 7.2-2 shows an example, taken from the Production Planning CSCI, showing an excerpt of
the object classes supporting the management of production resources. All resources have a
common set of attributes providing an identification, a name, and their current state, as well as
operations to allocate and deallocate the resource and update its state. There is, therefore, a single
class called "PlResource" which acts as the parent for all types of production resources.

PlResource

- myResourceId
- myResourceName
- myResourceState

+ AddResource()
+ DeleteResource()
+ ModifyResource()
+ ProvideAvailableResource()
+ QueryResourceStatus()

PlString
- myComputerList
- myDiskList

+ AddComputer()
+ RemoveComputer()
+ AddDisk()
+ RemoveDisk()

PlComputer
- myComputerType
- myCpuList
- myDiskList
+ AddCpu()
+ AddDisk()
+ AddRam()
+ RemoveCpu()
+ RemoveDisk()
+ RemoveRam()

PlCpu
- myCpuName
- myCpuId
- myCpuType

PlDiskStorage

- myAvailableDiskSpace
- myMaxDiskSpace

+ CheckAvailableDiskSpace()
+ GetMaxDiskSpace()

PlLocalDisk PlNetworkDisk

PlRam

- myAvailableRam
- myRam

+ CheckAvailableRam()
+ GetMaxRam()

1+

Figure 7.2-2. Example of an Object Model Diagram

7-3 305-CD-004-001

The diagram shows several types of resources, each a derived class. For example, strings
(represented by "PlString") may be associated with several computers and several network disks.
A computing platform ("PlComputer") consists of several components, namely several cpu
("PlCpu"), disks ("PlLocalDisk") and main memory ("PlRam"). It may also use several network
disks ("PlNetworkDisk"), and those disks might be attached to several computers.

7.3 Event Trace Diagram Tutorial

Figure 7.3-1 shows an example of a event trace diagram, again taken from the Production Planning
CSCI. The example shows a scenario in which a previously created plan is activated (the example
has been chosen for its simplicity). The first even occurs in the user interface, when production
planning staff selects a previously created plan and activates it. Correspondingly, the diagram
shows an arrow from the Planning User Interface to the Plan.

The software associated with the Plan object now will perform a number of operations, such as
verifying that the plan being activated is indeed valid, noting the differences between the currently
active plan and the new one, and creating new processing requests (or updating existing ones) to
implement the new plan. The result of this activity is a series of messages to the "DPR" class. Each
instance of this class represents a pending job and has associated with it any information which
must be provided as input to the processing CSCI when the PGE is initiated through a request for
data processing (hence the name of the class). Each message creates a new instance of a pending
job, or updates a currently existing pending job.

Concurrently, the planning CSCI monitors the inputs for which there are currently waiting jobs
(i.e., for which there is processing in the currently active plan). In essence, each of the pending
jobs waits for its inputs to become available. When they are, the pending job (i.e., the
corresponding instance of "DPR") is sent to the Processing CSCI. In the object design, interfaces
with external CSCI are typically represented as "Interface Classes". The "Processing Planning
Interface" is such an interface class. In the Planning CSCI object model, it is the target of the DPR
message.

7.4 State Transition Diagram Tutorial

Figure 7.4-1 shows an example of a state transition diagram. The rectangular box used to depict
object classes this time is used to show the possible states of the object. In the case of a production
plan ("PlPlan") there are two possible states:

•	 The plan can be a "candidate plan", i.e., one that has been fully planned but has not been
activated. A candidate plan is created with the "create plan" command. This is the initial
state of a plan. This is indicated in the diagram by showing that there is no previous state
(i.e., with a filled black circle).

7-4 305-CD-004-001

Planning Data Processing
User Plan Processing Planning

Interface Request (DPR) Interface

Activate Plan Command

Command - Create
Update DPR(s)

(condition: PGE(s) are
in current plan)

transmit DPR
(condition: all inputs

are available)

or

Figure 7.3-1. Example of an Event Trace Diagram

•	 A candidate plan can be made an "active plan" via an "activate plan" command. In this state,
the plan receives alerts for on-demand production requests and data arrival notifications
(DAN). It instructs DPR objects to transmit the corresponding data processing request
message when the job is ready (as discussed in the scenario in Section 7.3). This is the
final state of a plan. The plan is terminated when another plan is activated, or when this
plan is canceled. The final state of an object is indicated by the symbol shown to the left of
Activate Plan.

The diagram shows that during the creation of the candidate plan, the plan object interacts with a
number of other objects: with "Data Processing Requests" to obtain information about the PGE in
the plan; with "Resource Management" to determine the availability of resources needed by those
PGE, and with the data server (represented by the "Data Server Interface" class) to store the
candidate plan. Successful creation of the plan (or failure) also display a response on the planning
user interface.

7-5 305-CD-004-001

Data
Processing

Request
Resource

Management

Data
Server

Interface

Data
Processing
Requests

PIPlan

Active
Plan

Candidate
Plan

receive command
“create plan”

receive command
“activate plan”

activate
another plan

receive
cancel plan
command

alert
on-demand

production request

command to send DPR

query
PGEs

in the plan

query
available
resources

send
candidate

plan

DAN
arrival

all DPR
completed

Planning
User

Interface

display
plan creation

response

Figure 7.4-1. Example of a State Transition Diagram

7-6 305-CD-004-001

